On 2026/2/7 4:37, Waiman Long wrote:
> The current cpuset partition code is able to dynamically update
> the sched domains of a running system and the corresponding
> HK_TYPE_DOMAIN housekeeping cpumask to perform what is essentally the
> "isolcpus=domain,..." boot command line feature at run time.
> 
> The housekeeping cpumask update requires flushing a number of different
> workqueues which may not be safe with cpus_read_lock() held as the
> workqueue flushing code may acquire cpus_read_lock() or acquiring locks
> which have locking dependency with cpus_read_lock() down the chain. Below
> is an example of such circular locking problem.
> 
>   ======================================================
>   WARNING: possible circular locking dependency detected
>   6.18.0-test+ #2 Tainted: G S
>   ------------------------------------------------------
>   test_cpuset_prs/10971 is trying to acquire lock:
>   ffff888112ba4958 ((wq_completion)sync_wq){+.+.}-{0:0}, at: 
> touch_wq_lockdep_map+0x7a/0x180
> 
>   but task is already holding lock:
>   ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at: 
> cpuset_partition_write+0x85/0x130
> 
>   which lock already depends on the new lock.
> 
>   the existing dependency chain (in reverse order) is:
>   -> #4 (cpuset_mutex){+.+.}-{4:4}:
>   -> #3 (cpu_hotplug_lock){++++}-{0:0}:
>   -> #2 (rtnl_mutex){+.+.}-{4:4}:
>   -> #1 ((work_completion)(&arg.work)){+.+.}-{0:0}:
>   -> #0 ((wq_completion)sync_wq){+.+.}-{0:0}:
> 
>   Chain exists of:
>     (wq_completion)sync_wq --> cpu_hotplug_lock --> cpuset_mutex
> 
>   5 locks held by test_cpuset_prs/10971:
>    #0: ffff88816810e440 (sb_writers#7){.+.+}-{0:0}, at: ksys_write+0xf9/0x1d0
>    #1: ffff8891ab620890 (&of->mutex#2){+.+.}-{4:4}, at: 
> kernfs_fop_write_iter+0x260/0x5f0
>    #2: ffff8890a78b83e8 (kn->active#187){.+.+}-{0:0}, at: 
> kernfs_fop_write_iter+0x2b6/0x5f0
>    #3: ffffffffadf32900 (cpu_hotplug_lock){++++}-{0:0}, at: 
> cpuset_partition_write+0x77/0x130
>    #4: ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at: 
> cpuset_partition_write+0x85/0x130
> 
>   Call Trace:
>    <TASK>
>      :
>    touch_wq_lockdep_map+0x93/0x180
>    __flush_workqueue+0x111/0x10b0
>    housekeeping_update+0x12d/0x2d0
>    update_parent_effective_cpumask+0x595/0x2440
>    update_prstate+0x89d/0xce0
>    cpuset_partition_write+0xc5/0x130
>    cgroup_file_write+0x1a5/0x680
>    kernfs_fop_write_iter+0x3df/0x5f0
>    vfs_write+0x525/0xfd0
>    ksys_write+0xf9/0x1d0
>    do_syscall_64+0x95/0x520
>    entry_SYSCALL_64_after_hwframe+0x76/0x7e
> 
> To avoid such a circular locking dependency problem, we have to
> call housekeeping_update() without holding the cpus_read_lock() and
> cpuset_mutex. The current set of wq's flushed by housekeeping_update()
> may not have work functions that call cpus_read_lock() directly,
> but we are likely to extend the list of wq's that are flushed in the
> future. Moreover, the current set of work functions may hold locks that
> may have cpu_hotplug_lock down the dependency chain.
> 
> One way to do that is to defer the housekeeping_update() call after
> the current cpuset critical section has finished without holding
> cpus_read_lock. For cpuset control file write, this can be done by
> deferring it using task_work right before returning to userspace.
> 
> To enable mutual exclusion between the housekeeping_update() call and
> other cpuset control file write actions, a new top level cpuset_top_mutex
> is introduced. This new mutex will be acquired first to allow sharing
> variables used by both code paths. However, cpuset update from CPU
> hotplug can still happen in parallel with the housekeeping_update()
> call, though that should be rare in production environment.
> 
> As cpus_read_lock() is now no longer held when
> tmigr_isolated_exclude_cpumask() is called, it needs to acquire it
> directly.
> 
> The lockdep_is_cpuset_held() is also updated to return true if either
> cpuset_top_mutex or cpuset_mutex is held.
> 
> Signed-off-by: Waiman Long <[email protected]>
> ---
>  kernel/cgroup/cpuset.c        | 107 +++++++++++++++++++++++++++-------
>  kernel/sched/isolation.c      |   4 +-
>  kernel/time/timer_migration.c |   4 +-
>  3 files changed, 89 insertions(+), 26 deletions(-)
> 
> diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c
> index eb0eabd85e8c..d26c77a726b2 100644
> --- a/kernel/cgroup/cpuset.c
> +++ b/kernel/cgroup/cpuset.c
> @@ -65,14 +65,28 @@ static const char * const perr_strings[] = {
>   * CPUSET Locking Convention
>   * -------------------------
>   *
> - * Below are the three global locks guarding cpuset structures in lock
> + * Below are the four global/local locks guarding cpuset structures in lock
>   * acquisition order:
> + *  - cpuset_top_mutex
>   *  - cpu_hotplug_lock (cpus_read_lock/cpus_write_lock)
>   *  - cpuset_mutex
>   *  - callback_lock (raw spinlock)
>   *
> - * A task must hold all the three locks to modify externally visible or
> - * used fields of cpusets, though some of the internally used cpuset fields
> + * As cpuset will now indirectly flush a number of different workqueues in
> + * housekeeping_update() to update housekeeping cpumasks when the set of
> + * isolated CPUs is going to be changed, it may be vulnerable to deadlock
> + * if we hold cpus_read_lock while calling into housekeeping_update().
> + *
> + * The first cpuset_top_mutex will be held except when calling into
> + * cpuset_handle_hotplug() from the CPU hotplug code where cpus_write_lock
> + * and cpuset_mutex will be held instead. The main purpose of this mutex
> + * is to prevent regular cpuset control file write actions from interfering
> + * with the call to housekeeping_update(), though CPU hotplug operation can
> + * still happen in parallel. This mutex also provides protection for some
> + * internal variables.
> + *
> + * A task must hold all the remaining three locks to modify externally 
> visible
> + * or used fields of cpusets, though some of the internally used cpuset 
> fields
>   * and internal variables can be modified without holding callback_lock. If 
> only
>   * reliable read access of the externally used fields are needed, a task can
>   * hold either cpuset_mutex or callback_lock which are exposed to other
> @@ -100,6 +114,7 @@ static const char * const perr_strings[] = {
>   * cpumasks and nodemasks.
>   */
>  
> +static DEFINE_MUTEX(cpuset_top_mutex);
>  static DEFINE_MUTEX(cpuset_mutex);
>  
>  /*
> @@ -111,6 +126,8 @@ static DEFINE_MUTEX(cpuset_mutex);
>   *
>   * CSCB: Readable by holding either cpuset_mutex or callback_lock. Writable
>   *    by holding both cpuset_mutex and callback_lock.
> + *
> + * T:         Read/write-able by holding the cpuset_top_mutex.
>   */
>  
>  /*
> @@ -135,6 +152,13 @@ static cpumask_var_t     isolated_cpus;          /* CSCB 
> */
>   */
>  static bool          isolated_cpus_updating; /* RWCS */
>  
> +/*
> + * Copy of isolated_cpus to be processed by housekeeping_update()
> + */
> +static cpumask_var_t isolated_hk_cpus;       /* T */
> +static bool          isolcpus_twork_queued;  /* T */
> +
> +
>  /*
>   * A flag to force sched domain rebuild at the end of an operation.
>   * It can be set in
> @@ -298,6 +322,7 @@ void lockdep_assert_cpuset_lock_held(void)
>   */
>  void cpuset_full_lock(void)
>  {
> +     mutex_lock(&cpuset_top_mutex);
>       cpus_read_lock();
>       mutex_lock(&cpuset_mutex);
>  }
> @@ -306,12 +331,14 @@ void cpuset_full_unlock(void)
>  {
>       mutex_unlock(&cpuset_mutex);
>       cpus_read_unlock();
> +     mutex_unlock(&cpuset_top_mutex);
>  }
>  
>  #ifdef CONFIG_LOCKDEP
>  bool lockdep_is_cpuset_held(void)
>  {
> -     return lockdep_is_held(&cpuset_mutex);
> +     return lockdep_is_held(&cpuset_mutex) ||
> +            lockdep_is_held(&cpuset_top_mutex);
>  }
>  #endif
>  
> @@ -1302,30 +1329,53 @@ static bool prstate_housekeeping_conflict(int 
> prstate, struct cpumask *new_cpus)
>       return false;
>  }
>  
> -static void isolcpus_workfn(struct work_struct *work)
> +/*
> + * housekeeping_update() will only be called if isolated_cpus differs
> + * from isolated_hk_cpus. To be safe, rebuild_sched_domains() will always
> + * be called just in case there are still pending sched domains changes.
> + */
> +static void do_housekeeping_update(bool *flag)
>  {
> -     cpuset_full_lock();
> -     if (isolated_cpus_updating) {
> -             isolated_cpus_updating = false;
> -             WARN_ON_ONCE(housekeeping_update(isolated_cpus) < 0);
> -             rebuild_sched_domains_locked();
> +     bool update_hk = true;
> +
> +     guard(mutex)(&cpuset_top_mutex);
> +     if (flag)
> +             *flag = false;
> +     scoped_guard(spinlock_irq, &callback_lock) {
> +             if (cpumask_equal(isolated_hk_cpus, isolated_cpus))
> +                     update_hk = false;
> +             else
> +                     cpumask_copy(isolated_hk_cpus, isolated_cpus);
>       }
> -     cpuset_full_unlock();
> +     if (update_hk)
> +             WARN_ON_ONCE(housekeeping_update(isolated_hk_cpus) < 0);
> +     rebuild_sched_domains();
> +}
> +
> +static void isolcpus_workfn(struct work_struct *work)
> +{
> +     do_housekeeping_update(NULL);
> +}
> +
> +static void isolcpus_tworkfn(struct callback_head *cb)
> +{
> +     /* Clear isolcpus_twork_queued */
> +     do_housekeeping_update(&isolcpus_twork_queued);
>  }
>  
>  /*
>   * update_isolation_cpumasks - Update external isolation related CPU masks
> - *
> - * The following external CPU masks will be updated if necessary:
> - * - workqueue unbound cpumask
>   */
>  static void update_isolation_cpumasks(void)
>  {
>       static DECLARE_WORK(isolcpus_work, isolcpus_workfn);
> +     static struct callback_head twork_cb;
>  
>       lockdep_assert_cpuset_lock_held();
>       if (!isolated_cpus_updating)
>               return;
> +     else
> +             isolated_cpus_updating = false;
>  
>       /*
>        * This function can be reached either directly from regular cpuset
> @@ -1333,10 +1383,15 @@ static void update_isolation_cpumasks(void)
>        * the per-cpu kthread that calls cpuset_handle_hotplug() on behalf
>        * of the task that initiates CPU shutdown or bringup.
>        *
> -      * To have better flexibility and prevent the possibility of deadlock
> -      * when calling from CPU hotplug, we defer the housekeeping_update()
> -      * call to after the current cpuset critical section has finished.
> -      * This is done via workqueue.
> +      * To have better flexibility and prevent the possibility of deadlock,
> +      * we defer the housekeeping_update() call to after the current
> +      * cpuset critical section has finished. This is done via task_work
> +      * for cpuset control file write and workqueue for CPU hotplug.
> +      *
> +      * When calling from CPU hotplug, cpuset_top_mutex is not held. So the
> +      * cpuset operation can run asynchronously with 
> do_housekeeping_update().
> +      * This should not be a problem as another isolcpus_workfn() call will
> +      * be scheduled to make sure that housekeeping cpumasks will be updated.
>        */
>       if (current->flags & PF_KTHREAD) {
>               /*
> @@ -1352,8 +1407,19 @@ static void update_isolation_cpumasks(void)
>               return;
>       }
>  
> -     WARN_ON_ONCE(housekeeping_update(isolated_cpus) < 0);
> -     isolated_cpus_updating = false;
> +     /*
> +      * update_isolation_cpumasks() may be called more than once in the
> +      * same cpuset_mutex critical section.
> +      */
> +     lockdep_assert_held(&cpuset_top_mutex);
> +     if (isolcpus_twork_queued)
> +             return;
> +
> +     init_task_work(&twork_cb, isolcpus_tworkfn);
> +     if (!task_work_add(current, &twork_cb, TWA_RESUME))
> +             isolcpus_twork_queued = true;
> +     else
> +             WARN_ON_ONCE(1);        /* Current task shouldn't be exiting */
>  }
>  

Timeline:

user A                  user B
write isolated cpus     write isolated cpus
isolated_cpus_update
update_isolation_cpumasks
task_work_add
isolcpus_twork_queued =true

// before returning userspace
// waiting for worker
                        isolated_cpus_update
                        if (isolcpus_twork_queued)
                                return // Early exit
                        // return to userspace

// workqueue finishes
// return to userspace

For User B, the isolated_cpus value appears to be set and the syscall returns
successfully to userspace. However, because isolcpus_twork_queued was already
true (set by User A), User B's call skipped the actual mask update
(update_isolation_cpumasks).
Thus, the new isolated_cpus value is not yet effective in the kernel, even
though User B's write operation returned without error.

Is this a valid issue? Should User B's write be blocked?

>  /**
> @@ -3661,6 +3727,7 @@ int __init cpuset_init(void)
>       BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL));
>       BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL));
>       BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL));
> +     BUG_ON(!zalloc_cpumask_var(&isolated_hk_cpus, GFP_KERNEL));
>  
>       cpumask_setall(top_cpuset.cpus_allowed);
>       nodes_setall(top_cpuset.mems_allowed);
> diff --git a/kernel/sched/isolation.c b/kernel/sched/isolation.c
> index 3b725d39c06e..ef152d401fe2 100644
> --- a/kernel/sched/isolation.c
> +++ b/kernel/sched/isolation.c
> @@ -123,8 +123,6 @@ int housekeeping_update(struct cpumask *isol_mask)
>       struct cpumask *trial, *old = NULL;
>       int err;
>  
> -     lockdep_assert_cpus_held();
> -
>       trial = kmalloc(cpumask_size(), GFP_KERNEL);
>       if (!trial)
>               return -ENOMEM;
> @@ -136,7 +134,7 @@ int housekeeping_update(struct cpumask *isol_mask)
>       }
>  
>       if (!housekeeping.flags)
> -             static_branch_enable_cpuslocked(&housekeeping_overridden);
> +             static_branch_enable(&housekeeping_overridden);
>  
>       if (housekeeping.flags & HK_FLAG_DOMAIN)
>               old = housekeeping_cpumask_dereference(HK_TYPE_DOMAIN);
> diff --git a/kernel/time/timer_migration.c b/kernel/time/timer_migration.c
> index 6da9cd562b20..83428aa03aef 100644
> --- a/kernel/time/timer_migration.c
> +++ b/kernel/time/timer_migration.c
> @@ -1559,8 +1559,6 @@ int tmigr_isolated_exclude_cpumask(struct cpumask 
> *exclude_cpumask)
>       cpumask_var_t cpumask __free(free_cpumask_var) = CPUMASK_VAR_NULL;
>       int cpu;
>  
> -     lockdep_assert_cpus_held();
> -
>       if (!works)
>               return -ENOMEM;
>       if (!alloc_cpumask_var(&cpumask, GFP_KERNEL))
> @@ -1570,6 +1568,7 @@ int tmigr_isolated_exclude_cpumask(struct cpumask 
> *exclude_cpumask)
>        * First set previously isolated CPUs as available (unisolate).
>        * This cpumask contains only CPUs that switched to available now.
>        */
> +     guard(cpus_read_lock)();
>       cpumask_andnot(cpumask, cpu_online_mask, exclude_cpumask);
>       cpumask_andnot(cpumask, cpumask, tmigr_available_cpumask);
>  
> @@ -1626,7 +1625,6 @@ static int __init tmigr_init_isolation(void)
>       cpumask_andnot(cpumask, cpu_possible_mask, 
> housekeeping_cpumask(HK_TYPE_DOMAIN));
>  
>       /* Protect against RCU torture hotplug testing */
> -     guard(cpus_read_lock)();
>       return tmigr_isolated_exclude_cpumask(cpumask);
>  }
>  late_initcall(tmigr_init_isolation);

-- 
Best regards,
Ridong


Reply via email to