Hi Longman:
On 2026/2/13 0:46, Waiman Long wrote:
> The current cpuset partition code is able to dynamically update
> the sched domains of a running system and the corresponding
> HK_TYPE_DOMAIN housekeeping cpumask to perform what is essentally the
> "isolcpus=domain,..." boot command line feature at run time.
>
> The housekeeping cpumask update requires flushing a number of different
> workqueues which may not be safe with cpus_read_lock() held as the
> workqueue flushing code may acquire cpus_read_lock() or acquiring locks
> which have locking dependency with cpus_read_lock() down the chain. Below
> is an example of such circular locking problem.
>
> ======================================================
> WARNING: possible circular locking dependency detected
> 6.18.0-test+ #2 Tainted: G S
> ------------------------------------------------------
> test_cpuset_prs/10971 is trying to acquire lock:
> ffff888112ba4958 ((wq_completion)sync_wq){+.+.}-{0:0}, at:
> touch_wq_lockdep_map+0x7a/0x180
>
> but task is already holding lock:
> ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at:
> cpuset_partition_write+0x85/0x130
>
> which lock already depends on the new lock.
>
> the existing dependency chain (in reverse order) is:
> -> #4 (cpuset_mutex){+.+.}-{4:4}:
> -> #3 (cpu_hotplug_lock){++++}-{0:0}:
> -> #2 (rtnl_mutex){+.+.}-{4:4}:
> -> #1 ((work_completion)(&arg.work)){+.+.}-{0:0}:
> -> #0 ((wq_completion)sync_wq){+.+.}-{0:0}:
>
> Chain exists of:
> (wq_completion)sync_wq --> cpu_hotplug_lock --> cpuset_mutex
>
> 5 locks held by test_cpuset_prs/10971:
> #0: ffff88816810e440 (sb_writers#7){.+.+}-{0:0}, at: ksys_write+0xf9/0x1d0
> #1: ffff8891ab620890 (&of->mutex#2){+.+.}-{4:4}, at:
> kernfs_fop_write_iter+0x260/0x5f0
> #2: ffff8890a78b83e8 (kn->active#187){.+.+}-{0:0}, at:
> kernfs_fop_write_iter+0x2b6/0x5f0
> #3: ffffffffadf32900 (cpu_hotplug_lock){++++}-{0:0}, at:
> cpuset_partition_write+0x77/0x130
> #4: ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at:
> cpuset_partition_write+0x85/0x130
>
> Call Trace:
> <TASK>
> :
> touch_wq_lockdep_map+0x93/0x180
> __flush_workqueue+0x111/0x10b0
> housekeeping_update+0x12d/0x2d0
> update_parent_effective_cpumask+0x595/0x2440
> update_prstate+0x89d/0xce0
> cpuset_partition_write+0xc5/0x130
> cgroup_file_write+0x1a5/0x680
> kernfs_fop_write_iter+0x3df/0x5f0
> vfs_write+0x525/0xfd0
> ksys_write+0xf9/0x1d0
> do_syscall_64+0x95/0x520
> entry_SYSCALL_64_after_hwframe+0x76/0x7e
>
> To avoid such a circular locking dependency problem, we have to
> call housekeeping_update() without holding the cpus_read_lock() and
> cpuset_mutex. The current set of wq's flushed by housekeeping_update()
> may not have work functions that call cpus_read_lock() directly,
> but we are likely to extend the list of wq's that are flushed in the
> future. Moreover, the current set of work functions may hold locks that
> may have cpu_hotplug_lock down the dependency chain.
>
> One way to do that is to defer the housekeeping_update() call after
> the current cpuset critical section has finished without holding
> cpus_read_lock. For cpuset control file write, this can be done by
> deferring it using task_work right before returning to userspace.
>
> To enable mutual exclusion between the housekeeping_update() call and
> other cpuset control file write actions, a new top level cpuset_top_mutex
> is introduced. This new mutex will be acquired first to allow sharing
> variables used by both code paths. However, cpuset update from CPU
> hotplug can still happen in parallel with the housekeeping_update()
> call, though that should be rare in production environment.
>
> As cpus_read_lock() is now no longer held when
> tmigr_isolated_exclude_cpumask() is called, it needs to acquire it
> directly.
>
> The lockdep_is_cpuset_held() is also updated to return true if either
> cpuset_top_mutex or cpuset_mutex is held.
>
> Signed-off-by: Waiman Long <[email protected]>
> ---
> kernel/cgroup/cpuset.c | 99 ++++++++++++++++++++++++++++++++---
> kernel/sched/isolation.c | 4 +-
> kernel/time/timer_migration.c | 4 +-
> 3 files changed, 93 insertions(+), 14 deletions(-)
>
> diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c
> index 48b7f275085b..c6a97956a991 100644
> --- a/kernel/cgroup/cpuset.c
> +++ b/kernel/cgroup/cpuset.c
> @@ -65,14 +65,28 @@ static const char * const perr_strings[] = {
> * CPUSET Locking Convention
> * -------------------------
> *
> - * Below are the three global locks guarding cpuset structures in lock
> + * Below are the four global/local locks guarding cpuset structures in lock
> * acquisition order:
> + * - cpuset_top_mutex
> * - cpu_hotplug_lock (cpus_read_lock/cpus_write_lock)
> * - cpuset_mutex
> * - callback_lock (raw spinlock)
> *
> - * A task must hold all the three locks to modify externally visible or
> - * used fields of cpusets, though some of the internally used cpuset fields
> + * As cpuset will now indirectly flush a number of different workqueues in
> + * housekeeping_update() to update housekeeping cpumasks when the set of
> + * isolated CPUs is going to be changed, it may be vulnerable to deadlock
> + * if we hold cpus_read_lock while calling into housekeeping_update().
> + *
> + * The first cpuset_top_mutex will be held except when calling into
> + * cpuset_handle_hotplug() from the CPU hotplug code where cpus_write_lock
> + * and cpuset_mutex will be held instead. The main purpose of this mutex
> + * is to prevent regular cpuset control file write actions from interfering
> + * with the call to housekeeping_update(), though CPU hotplug operation can
> + * still happen in parallel. This mutex also provides protection for some
> + * internal variables.
> + *
> + * A task must hold all the remaining three locks to modify externally
> visible
> + * or used fields of cpusets, though some of the internally used cpuset
> fields
> * and internal variables can be modified without holding callback_lock. If
> only
> * reliable read access of the externally used fields are needed, a task can
> * hold either cpuset_mutex or callback_lock which are exposed to other
> @@ -100,6 +114,7 @@ static const char * const perr_strings[] = {
> * cpumasks and nodemasks.
> */
>
> +static DEFINE_MUTEX(cpuset_top_mutex);
> static DEFINE_MUTEX(cpuset_mutex);
>
> /*
> @@ -111,6 +126,8 @@ static DEFINE_MUTEX(cpuset_mutex);
> *
> * CSCB: Readable by holding either cpuset_mutex or callback_lock. Writable
> * by holding both cpuset_mutex and callback_lock.
> + *
> + * T: Read/write-able by holding the cpuset_top_mutex.
> */
>
> /*
> @@ -135,6 +152,18 @@ static cpumask_var_t isolated_cpus; /* CSCB
> */
> */
> static bool isolated_cpus_updating; /* RWCS */
>
> +/*
> + * Copy of isolated_cpus to be passed to housekeeping_update()
> + */
> +static cpumask_var_t isolated_hk_cpus; /* T */
> +
> +/*
> + * Flag to prevent queuing more than one task_work to the same
> cpuset_top_mutex
> + * critical section.
> + */
> +static bool isolcpus_twork_queued; /* T */
> +
> +
> /*
> * A flag to force sched domain rebuild at the end of an operation.
> * It can be set in
> @@ -301,20 +330,24 @@ void lockdep_assert_cpuset_lock_held(void)
> */
> void cpuset_full_lock(void)
> {
> + mutex_lock(&cpuset_top_mutex);
> cpus_read_lock();
> mutex_lock(&cpuset_mutex);
> }
>
> void cpuset_full_unlock(void)
> {
> + isolcpus_twork_queued = false;
This is odd.
> mutex_unlock(&cpuset_mutex);
> cpus_read_unlock();
> + mutex_unlock(&cpuset_top_mutex);
> }
>
> #ifdef CONFIG_LOCKDEP
> bool lockdep_is_cpuset_held(void)
> {
> - return lockdep_is_held(&cpuset_mutex);
> + return lockdep_is_held(&cpuset_mutex) ||
> + lockdep_is_held(&cpuset_top_mutex);
> }
> #endif
>
> @@ -1338,6 +1371,28 @@ static bool prstate_housekeeping_conflict(int prstate,
> struct cpumask *new_cpus)
> return false;
> }
>
> +/*
> + * housekeeping_update() will only be called if isolated_cpus differs
> + * from isolated_hk_cpus. To be safe, rebuild_sched_domains() will always
> + * be called just in case there are still pending sched domains changes.
> + */
> +static void isolcpus_tworkfn(struct callback_head *cb)
> +{
> + bool update_hk = true;
> +
> + guard(mutex)(&cpuset_top_mutex);
> + scoped_guard(spinlock_irq, &callback_lock) {
> + if (cpumask_equal(isolated_hk_cpus, isolated_cpus))
> + update_hk = false;
> + else
> + cpumask_copy(isolated_hk_cpus, isolated_cpus);
> + }
> + if (update_hk)
> + WARN_ON_ONCE(housekeeping_update(isolated_hk_cpus) < 0);
> + rebuild_sched_domains();
> + kfree(cb);
> +}
> +
> /*
> * update_isolation_cpumasks - Update external isolation related CPU masks
> *
> @@ -1346,15 +1401,42 @@ static bool prstate_housekeeping_conflict(int
> prstate, struct cpumask *new_cpus)
> */
> static void update_isolation_cpumasks(void)
> {
> - int ret;
> + struct callback_head *twork_cb;
>
> if (!isolated_cpus_updating)
> return;
> + else
> + isolated_cpus_updating = false;
> +
> + /*
> + * CPU hotplug shouldn't set isolated_cpus_updating.
> + *
> + * To have better flexibility and prevent the possibility of deadlock,
> + * we defer the housekeeping_update() call to after the current cpuset
> + * critical section has finished. This is done via the synchronous
> + * task_work which will be executed right before returning to userspace.
> + *
> + * update_isolation_cpumasks() may be called more than once in the
> + * same cpuset_mutex critical section.
> + */
> + lockdep_assert_held(&cpuset_top_mutex);
> + if (isolcpus_twork_queued)
> + return;
>
> - ret = housekeeping_update(isolated_cpus);
> - WARN_ON_ONCE(ret < 0);
> + twork_cb = kzalloc(sizeof(struct callback_head), GFP_KERNEL);
> + if (!twork_cb)
> + return;
>
> - isolated_cpus_updating = false;
> + /*
> + * isolcpus_tworkfn() will be invoked before returning to userspace
> + */
> + init_task_work(twork_cb, isolcpus_tworkfn);
> + if (task_work_add(current, twork_cb, TWA_RESUME)) {
> + kfree(twork_cb);
> + WARN_ON_ONCE(1); /* Current task shouldn't be exiting */
> + } else {
> + isolcpus_twork_queued = true;
> + }
> }
>
Actually, I find this function quite complex, with numerous global
variables to maintain.
I'm considering whether we can simplify it. Could we just call
update_isolation_cpumasks() at the end of update_prstate(),
update_cpumask(), and update_exclusive_cpumask()?
i.e.
static void update_isolation_cpumasks(void)
{
struct callback_head twork_cb
if (!isolated_cpus_updating)
return;
task_work_add(...)
isolated_cpus_updating = false;
}
static int update_prstate(struct cpuset *cs, int new_prs)
{
...
free_tmpmasks(&tmpmask);
update_isolation_cpumasks();
return 0;
}
For rebuilding scheduling domains, we could rebuild them during the
set operation only when force_sd_rebuild = true and
!isolated_cpus_updating. Otherwise, the rebuild would be deferred
and performed only once in isolcpus_tworkfn().
> /**
> @@ -3689,6 +3771,7 @@ int __init cpuset_init(void)
> BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL));
> BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL));
> BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL));
> + BUG_ON(!zalloc_cpumask_var(&isolated_hk_cpus, GFP_KERNEL));
>
> cpumask_setall(top_cpuset.cpus_allowed);
> nodes_setall(top_cpuset.mems_allowed);
> diff --git a/kernel/sched/isolation.c b/kernel/sched/isolation.c
> index 3b725d39c06e..ef152d401fe2 100644
> --- a/kernel/sched/isolation.c
> +++ b/kernel/sched/isolation.c
> @@ -123,8 +123,6 @@ int housekeeping_update(struct cpumask *isol_mask)
> struct cpumask *trial, *old = NULL;
> int err;
>
> - lockdep_assert_cpus_held();
> -
> trial = kmalloc(cpumask_size(), GFP_KERNEL);
> if (!trial)
> return -ENOMEM;
> @@ -136,7 +134,7 @@ int housekeeping_update(struct cpumask *isol_mask)
> }
>
> if (!housekeeping.flags)
> - static_branch_enable_cpuslocked(&housekeeping_overridden);
> + static_branch_enable(&housekeeping_overridden);
>
> if (housekeeping.flags & HK_FLAG_DOMAIN)
> old = housekeeping_cpumask_dereference(HK_TYPE_DOMAIN);
> diff --git a/kernel/time/timer_migration.c b/kernel/time/timer_migration.c
> index 6da9cd562b20..83428aa03aef 100644
> --- a/kernel/time/timer_migration.c
> +++ b/kernel/time/timer_migration.c
> @@ -1559,8 +1559,6 @@ int tmigr_isolated_exclude_cpumask(struct cpumask
> *exclude_cpumask)
> cpumask_var_t cpumask __free(free_cpumask_var) = CPUMASK_VAR_NULL;
> int cpu;
>
> - lockdep_assert_cpus_held();
> -
> if (!works)
> return -ENOMEM;
> if (!alloc_cpumask_var(&cpumask, GFP_KERNEL))
> @@ -1570,6 +1568,7 @@ int tmigr_isolated_exclude_cpumask(struct cpumask
> *exclude_cpumask)
> * First set previously isolated CPUs as available (unisolate).
> * This cpumask contains only CPUs that switched to available now.
> */
> + guard(cpus_read_lock)();
> cpumask_andnot(cpumask, cpu_online_mask, exclude_cpumask);
> cpumask_andnot(cpumask, cpumask, tmigr_available_cpumask);
>
> @@ -1626,7 +1625,6 @@ static int __init tmigr_init_isolation(void)
> cpumask_andnot(cpumask, cpu_possible_mask,
> housekeeping_cpumask(HK_TYPE_DOMAIN));
>
> /* Protect against RCU torture hotplug testing */
> - guard(cpus_read_lock)();
> return tmigr_isolated_exclude_cpumask(cpumask);
> }
> late_initcall(tmigr_init_isolation);
--
Best regards,
Ridong