Sorry about that. Outlook strikes again and does not transform equations to 
HTML format. If you use outlook all the equations show up. I will resend in the 
morning.
David

Sent from my iPad

> On Dec 27, 2013, at 12:34 AM, "David Smith" <[email protected]> wrote:
> 
> 
> ------=_NextPart_001_0004_01CF029B.5B4EA1A0
> Content-Type: text/plain;
>    charset="us-ascii"
> Content-Transfer-Encoding: 7bit
> 
> Merry Post Christmas. I finally had some time to work through the math (beat
> Mathematica into submission) for the string tension and do a plot. Quite
> instructive.
> 
> 
> 
> For the conditions of my 11th course gut C string:
> 
> 
> 
> Diameter = 0.00203
> 
> Density = 1360
> 
> Len = 0.685
> 
> Tension = 28.0
> 
> 
> 
> Which produces a pitch at 58.2 HZ.
> 
> For the Frequency as a function of Tension the equation is:
> 
> 
> 
> 
> 
> For the Cents as a function of Tension around the C string frequency the
> equation is:
> 
> 
> 
> or
> 
>                Cents[T_] 
> using the values for the C string.
> 
> 
> 
> For an increase in Tension of 1.0 newton (0.1 kg) the difference in pitch is
> 30.3744 Cents
> 
> For an decrease in Tension of 1.0 newtom (0.1kg) the different in pitch is
> -31.4817 Cents
> 
> 
> 
> Pretty sensitive to small changes in tension.
> 
> 
> 
> The partial derivative of this with T_ is:
> 
>                CentsPerNewton[T_] 
> 
> 
> This is a pretty straightforward equation. It states that the sensitivity of
> the string (in cents) for the C string to Tension is inversely proportional
> to the Tension. That means that if we increase the tension the change in
> pitch (in cents) goes down).
> 
> 
> 
> The chart is:
> 
> 
> 
> 
> 
> 
> 
> So, higher tension strings will reduce the sensitivity. But not by a lot (if
> we keep to a reasonable range). The bottom line is that the 11th course of a
> baroque lute at this string length using gut is just a pain to tune. The
> only reasonable choice is to provide a better tuning mechanism such as the
> planetary gear tuners.
> 
> 
> 
> Anyway, thanks for your patience as I work through this. It has been fun and
> now I think I understand what is happening.
> 
> 
> 
> Regards
> 
> David
> 
> 
> 
> -----Original Message-----
> From: [email protected] [mailto:[email protected]] On Behalf
> Of David van Ooijen
> Sent: Friday, December 20, 2013 9:03 AM
> Cc: Lute List
> Subject: [LUTE] Re: Question on String Tension
> 
> 
> 
>>> When I plot the partial derivative of F'(T) using the values for
> 
>   this string I find that the sensitivity is actually quite small; less
> 
>   than 1/10th of a hertz per Newton
> 
>   <<
> 
>   Don't think in Hertz. The difference between 440 and 441Hz is a smaller
> 
>   difference in pitch than between 40 and 41 Hz. Think in cents, it makes
> 
>   calculating easier, and the results are easer to understand too.
> 
>   David
> 
> 
> 
>   --
> 
> 
> 
> 
> 
> To get on or off this list see list information at
> <http://www.cs.dartmouth.edu/~wbc/lute-admin/index.html>
> http://www.cs.dartmouth.edu/~wbc/lute-admin/index.html
> 
> 
> ------=_NextPart_001_0004_01CF029B.5B4EA1A0
> Content-Type: text/html;
>    charset="us-ascii"
> Content-Transfer-Encoding: quoted-printable
> 
> <html xmlns:v="urn:schemas-microsoft-com:vml" 
> xmlns:o="urn:schemas-microsoft-com:office:office" 
> xmlns:w="urn:schemas-microsoft-com:office:word" 
> xmlns:m="http://schemas.microsoft.com/office/2004/12/omml"; 
> xmlns="http://www.w3.org/TR/REC-html40";><head><meta http-equiv=Content-Type 
> content="text/html; charset=us-ascii"><meta name=Generator content="Microsoft 
> Word 15 (filtered medium)"><!--[if !mso]><style>v\:* 
> {behavior:url(#default#VML);}
> o\:* {behavior:url(#default#VML);}
> w\:* {behavior:url(#default#VML);}
> .shape {behavior:url(#default#VML);}
> </style><![endif]--><style><!--
> /* Font Definitions */
> @font-face
>    {font-family:Courier;
>    panose-1:2 7 4 9 2 2 5 2 4 4;}
> @font-face
>    {font-family:"Cambria Math";
>    panose-1:2 4 5 3 5 4 6 3 2 4;}
> @font-face
>    {font-family:Calibri;
>    panose-1:2 15 5 2 2 2 4 3 2 4;}
> /* Style Definitions */
> p.MsoNormal, li.MsoNormal, div.MsoNormal
>    {margin:0in;
>    margin-bottom:.0001pt;
>    font-size:11.0pt;
>    font-family:"Calibri","sans-serif";}
> a:link, span.MsoHyperlink
>    {mso-style-priority:99;
>    color:#0563C1;
>    text-decoration:underline;}
> a:visited, span.MsoHyperlinkFollowed
>    {mso-style-priority:99;
>    color:#954F72;
>    text-decoration:underline;}
> p.MsoPlainText, li.MsoPlainText, div.MsoPlainText
>    {mso-style-priority:99;
>    mso-style-link:"Plain Text Char";
>    margin:0in;
>    margin-bottom:.0001pt;
>    font-size:11.0pt;
>    font-family:"Calibri","sans-serif";}
> span.PlainTextChar
>    {mso-style-name:"Plain Text Char";
>    mso-style-priority:99;
>    mso-style-link:"Plain Text";
>    font-family:"Calibri","sans-serif";}
> span.MathematicaFormatStandardForm
>    {mso-style-name:MathematicaFormatStandardForm;
>    mso-style-priority:99;
>    font-family:Courier;}
> .MsoChpDefault
>    {mso-style-type:export-only;}
> @page WordSection1
>    {size:8.5in 11.0in;
>    margin:1.0in 1.0in 1.0in 1.0in;}
> div.WordSection1
>    {page:WordSection1;}
> --></style><!--[if gte mso 9]><xml>
> <o:shapedefaults v:ext="edit" spidmax="1026" />
> </xml><![endif]--><!--[if gte mso 9]><xml>
> <o:shapelayout v:ext="edit">
> <o:idmap v:ext="edit" data="1" />
> </o:shapelayout></xml><![endif]--></head><body lang=EN-US link="#0563C1" 
> vlink="#954F72"><div class=WordSection1><p class=MsoPlainText>Merry Post 
> Christmas. I finally had some time to work through the math (beat Mathematica 
> into submission) for the string tension and do a plot. Quite 
> instructive.<o:p></o:p></p><p class=MsoPlainText><o:p>&nbsp;</o:p></p><p 
> class=MsoPlainText>For the conditions of my 11th course gut C 
> string:<o:p></o:p></p><p class=MsoPlainText><o:p>&nbsp;</o:p></p><p 
> class=MsoPlainText style='margin-left:.5in'>Diameter = 
> 0.00203<o:p></o:p></p><p class=MsoPlainText style='margin-left:.5in'>Density 
> = 1360<o:p></o:p></p><p class=MsoPlainText style='margin-left:.5in'>Len = 
> 0.685<o:p></o:p></p><p class=MsoPlainText style='margin-left:.5in'>Tension = 
> 28.0<o:p></o:p></p><p class=MsoPlainText><o:p>&nbsp;</o:p></p><p 
> class=MsoPlainText>Which produces a pitch at 58.2 HZ.<o:p></o:p></p><p 
> class=MsoPlainText>For the Frequency as a function of Tension the equation 
> is:<o!
 :p!
>> </o:p></p><p class=MsoPlainText style='margin-left:.5in'><!--[if gte 
>> msEquation 12]><m:oMathPara><m:oMathParaPr><m:jc 
>> m:val="left"/></m:oMathParaPr><m:oMath><span style='font-family:"Cambria 
>> Math","serif"'> <m:r><m:rPr><m:scr m:val="roman"/><m:sty 
>> m:val="p"/></m:rPr>Frequency</m:r><m:r><i>[</i></m:r><m:r><m:rPr><m:scr 
>> m:val="roman"/><m:sty 
>> m:val="p"/></m:rPr>T_</m:r><m:r><i>]=</i></m:r></span><m:f><m:fPr><span 
>> style='font-family:"Cambria 
>> Math","serif"'><m:ctrlPr></m:ctrlPr></span></m:fPr><m:num><m:sSup><m:sSupPr><span
>>  style='font-family:"Cambria 
>> Math","serif"'><m:ctrlPr></m:ctrlPr></span></m:sSupPr><m:e><i><span 
>> style='font-family:"Cambria 
>> Math","serif"'><m:r>(</m:r></span></i><m:f><m:fPr><span 
>> style='font-family:"Cambria 
>> Math","serif"'><m:ctrlPr></m:ctrlPr></span></m:fPr><m:num><i><span 
>> style='font-family:"Cambria 
>> Math","serif"'><m:r>T</m:r></span></i></m:num><m:den><i><span 
>> style='font-family:"Cambria Math","serif"'><m:r>&#960;</m:r></span></i><span 
>> style='font-family:"!
 C!
> ambria Math","serif"'><m:r><m:rPr><m:scr m:val="roman"/><m:sty!
>  m:val="p"/></m:rPr>Density</m:r></span></m:den></m:f><i><span 
> style='font-family:"Cambria 
> Math","serif"'><m:r>)</m:r></span></i></m:e><m:sup><i><span 
> style='font-family:"Cambria 
> Math","serif"'><m:r>0.5</m:r></span></i></m:sup></m:sSup></m:num><m:den><span 
> style='font-family:"Cambria Math","serif"'><m:r><m:rPr><m:scr 
> m:val="roman"/><m:sty 
> m:val="p"/></m:rPr>Diameter</m:r><m:r><i>*</i></m:r><m:r><m:rPr><m:scr 
> m:val="roman"/><m:sty 
> m:val="p"/></m:rPr>Len</m:r></span></m:den></m:f></m:oMath></m:oMathPara><![endif]--><![if
>  !msEquation]><span 
> style='font-size:11.0pt;font-family:"Calibri","sans-serif";mso-fareast-language:EN-US'><img
>  width=205 height=47 id="_x0000_i1025" 
> src="cid:[email protected]"></span><![endif]><o:p></o:p></p><p 
> class=MsoPlainText><o:p>&nbsp;</o:p></p><p class=MsoPlainText>For the Cents 
> as a function of Tension around the C string frequency the equation 
> is:<o:p></o:p></p><p class=MsoPlainText style='margin-left:.5in'><!--[if gte 
> msEquation 12]><!
 m!
> :oMathPara><m:oMathParaPr><m:jc m:val="left"/></m:oMathParaPr><m:oMath><span 
> style='font-family:"Cambria Math","serif"'><m:r><m:rPr><m:scr 
> m:val="roman"/><m:sty 
> m:val="p"/></m:rPr>Cents</m:r><m:r><i>[</i></m:r><m:r><m:rPr><m:scr 
> m:val="roman"/><m:sty 
> m:val="p"/></m:rPr>T_</m:r><m:r><i>]=1200.*</i></m:r><m:r><m:rPr><m:scr 
> m:val="roman"/><m:sty 
> m:val="p"/></m:rPr>Log</m:r><m:r><i>[2,</i></m:r></span><m:f><m:fPr><m:type 
> m:val="lin"/><span style='font-family:"Cambria 
> Math","serif"'><m:ctrlPr></m:ctrlPr></span></m:fPr><m:num><span 
> style='font-family:"Cambria Math","serif"'><m:r><m:rPr><m:scr 
> m:val="roman"/><m:sty 
> m:val="p"/></m:rPr>Frequency</m:r><m:r><i>[</i></m:r><m:r><i>T</i></m:r><m:r><i>]</i></m:r></span></m:num><m:den><i><span
>  style='font-family:"Cambria 
> Math","serif"'><m:r>58.2168</m:r></span></i></m:den></m:f><i><span 
> style='font-family:"Cambria 
> Math","serif"'><m:r>]</m:r></span></i></m:oMath></m:oMathPara><![endif]--><![if
>  !msEquation]><span style='font-size:11.0pt;fon!
 t!
> -family:"Calibri","sans-serif";mso-fareast-language:EN-US'><img width=3!
> 17 height=17 id="_x0000_i1025" 
> src="cid:[email protected]"></span><![endif]><o:p></o:p></p><p 
> class=MsoPlainText>or<o:p></o:p></p><p 
> class=MsoPlainText>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
>  Cents[T_] = <!--[if gte msEquation 12]><m:oMath><i><span 
> style='font-family:"Cambria Math","serif"'><m:r>1731.23</m:r></span></i><span 
> style='font-family:"Cambria Math","serif"'><m:r><m:rPr><m:scr 
> m:val="roman"/><m:sty 
> m:val="p"/></m:rPr>Log</m:r><m:r><i>[0.188982</i></m:r></span><m:sSup><m:sSupPr><span
>  style='font-family:"Cambria 
> Math","serif"'><m:ctrlPr></m:ctrlPr></span></m:sSupPr><m:e><i><span 
> style='font-family:"Cambria 
> Math","serif"'><m:r>T</m:r></span></i></m:e><m:sup><i><span 
> style='font-family:"Cambria 
> Math","serif"'><m:r>0.5</m:r></span></i></m:sup></m:sSup><i><span 
> style='font-family:"Cambria 
> Math","serif"'><m:r>]</m:r></span></i></m:oMath><![endif]--><![if 
> !msEquation]><span style='font-size:11.0pt;font-family!
 :!
> "Calibri","sans-serif";position:relative;top:3.0pt;mso-text-raise:-3.0pt;mso-fareast-language:EN-US'><img
>  width=169 height=18 id="_x0000_i1025" 
> src="cid:[email protected]"></span><![endif]><o:p></o:p></p><p 
> class=MsoPlainText>using the values for the C string.<o:p></o:p></p><p 
> class=MsoPlainText><o:p>&nbsp;</o:p></p><p class=MsoPlainText>For an increase 
> in Tension of 1.0 newton (0.1 kg) the difference in pitch is 30.3744 
> Cents<o:p></o:p></p><p class=MsoPlainText>For an decrease in Tension of 1.0 
> newtom (0.1kg) the different in pitch is -31.4817 Cents<o:p></o:p></p><p 
> class=MsoPlainText><o:p>&nbsp;</o:p></p><p class=MsoPlainText>Pretty 
> sensitive to small changes in tension.<o:p></o:p></p><p 
> class=MsoPlainText><o:p>&nbsp;</o:p></p><p class=MsoPlainText>The partial 
> derivative of this with T_ is:<o:p></o:p></p><p 
> class=MsoPlainText>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
>  CentsPerNewton[T_] = <!--[if gte msEquation!
  !
> 12]><m:oMath><m:f><m:fPr><span style='font-family:"Cambria Math","serif!
> "'><m:ctrlPr></m:ctrlPr></span></m:fPr><m:num><i><span 
> style='font-family:"Cambria 
> Math","serif"'><m:r>865.617</m:r></span></i></m:num><m:den><i><span 
> style='font-family:"Cambria 
> Math","serif"'><m:r>T</m:r></span></i></m:den></m:f></m:oMath><![endif]--><![if
>  !msEquation]><span 
> style='font-size:11.0pt;font-family:"Calibri","sans-serif";position:relative;top:6.0pt;mso-text-raise:-6.0pt;mso-fareast-language:EN-US'><img
>  width=39 height=25 id="_x0000_i1025" 
> src="cid:[email protected]"></span><![endif]><o:p></o:p></p><p 
> class=MsoPlainText><o:p>&nbsp;</o:p></p><p class=MsoPlainText>This is a 
> pretty straightforward equation. It states that the sensitivity of the string 
> (in cents) for the C string to Tension is inversely proportional to the 
> Tension. That means that if we increase the tension the change in pitch (in 
> cents) goes down).<o:p></o:p></p><p 
> class=MsoPlainText><o:p>&nbsp;</o:p></p><p class=MsoPlainText>The chart 
> is:<o:p></o:p></p><p class=MsoPlainText><o:p>&nb!
 s!
> p;</o:p></p><p class=MsoPlainText><span 
> class=MathematicaFormatStandardForm><img width=360 height=228 
> id="Picture_x0020_3" 
> src="cid:[email protected]"></span><o:p></o:p></p><p 
> class=MsoPlainText><o:p>&nbsp;</o:p></p><p class=MsoPlainText><a 
> name="_MailEndCompose">So, higher tension strings will reduce the 
> sensitivity. But not by a lot (if we keep to a reasonable range). The bottom 
> line is that the 11<sup>th</sup> course of a baroque lute at this string 
> length using gut is just a pain to tune. The only reasonable choice is to 
> provide a better tuning mechanism such as the planetary gear 
> tuners.<o:p></o:p></a></p><p class=MsoPlainText><o:p>&nbsp;</o:p></p><p 
> class=MsoPlainText>Anyway, thanks for your patience as I work through this. 
> It has been fun and now I think I understand what is 
> happening.<o:p></o:p></p><p class=MsoPlainText><o:p>&nbsp;</o:p></p><p 
> class=MsoPlainText>Regards<o:p></o:p></p><p 
> class=MsoPlainText>David<o:p></o:p></p><p class=MsoPlainText><o:p>!
 &!
> nbsp;</o:p></p><p class=MsoPlainText>-----Original Message-----<br>From!
> : [email protected] [mailto:[email protected]] On Behalf Of 
> David van Ooijen<br>Sent: Friday, December 20, 2013 9:03 AM<br>Cc: Lute 
> List<br>Subject: [LUTE] Re: Question on String Tension</p><p 
> class=MsoPlainText><o:p>&nbsp;</o:p></p><p class=MsoPlainText>&nbsp;&nbsp; 
> &gt;&gt; When I plot the partial derivative of F'(T) using the values 
> for<o:p></o:p></p><p class=MsoPlainText>&nbsp;&nbsp; this string I find that 
> the sensitivity is actually quite small; less<o:p></o:p></p><p 
> class=MsoPlainText>&nbsp;&nbsp; than 1/10th of a hertz per 
> Newton<o:p></o:p></p><p class=MsoPlainText>&nbsp;&nbsp; 
> &lt;&lt;<o:p></o:p></p><p class=MsoPlainText>&nbsp;&nbsp; Don't think in 
> Hertz. The difference between 440 and 441Hz is a smaller<o:p></o:p></p><p 
> class=MsoPlainText>&nbsp;&nbsp; difference in pitch than between 40 and 41 
> Hz. Think in cents, it makes<o:p></o:p></p><p class=MsoPlainText>&nbsp;&nbsp; 
> calculating easier, and the results are easer to understand 
> too.<o:p></o:p></p!
 >!
> <p class=MsoPlainText>&nbsp;&nbsp; David<o:p></o:p></p><p 
> class=MsoPlainText><o:p>&nbsp;</o:p></p><p class=MsoPlainText>&nbsp;&nbsp; 
> --<o:p></o:p></p><p class=MsoPlainText><o:p>&nbsp;</o:p></p><p 
> class=MsoPlainText><o:p>&nbsp;</o:p></p><p class=MsoPlainText>To get on or 
> off this list see list information at <a 
> href="http://www.cs.dartmouth.edu/~wbc/lute-admin/index.html";><span 
> style='color:windowtext;text-decoration:none'>http://www.cs.dartmouth.edu/~wbc/lute-admin/index.html</span></a><o:p></o:p></p></div></body></html>
> ------=_NextPart_001_0004_01CF029B.5B4EA1A0--
> 
> --


Reply via email to