Tim Michelsen wrote: > Hello, > thanks. > I checked again from contour_demo.py of the basemap distribution. > > There lats, lons are uniquely monoton increasing from 0-360 and from -90 to > 90. > In my case data is written row-by-row: > * increasing from lowest latitude western most longitude to easternmost > longitude and then increasing each rows in the same manner to the northermost > latitude (see below). > > So, as you said, it's a question of re-aranging the data. that it fits the to > the way m.contour expects the 2-D array. > Also, since the grid is still coarse, I would need to apply some smoothing > afterwards. What do you recommend for that? > Timme: Here's one way to do it
from matplotlib.mlab import load import matplotlib.pyplot as plt import numpy as np data = load("data.txt") # need to know nlons and nlats beforehand! nlons = 8; nlats = 25 X = data[0::nlats,0] Y = data[0:nlats,1] # data is in nlons,nlats order in file, need to transpose Z = data[:,2].reshape(nlons,nlats).transpose() X,Y = np.meshgrid(X,Y) CS = plt.contourf(X,Y,Z,20) plt.show() I don't have any recommendations for smoothing - why don't you plot the raw data first and see if you really need it? > I don't know how I can do this easily by hand. May you give me some guidance > here, please? > > But I may just convert it to a shape file using GIS then load it with the > shapefile interface you wrote. > What would you see as most convenient way? > If I produce maps with a GIS but want to use matplotlib for the map plotting, > what would be the preferred export format? Any gdal format? > I prefer netCDF format for gridded data (basemap contains a function for reading netCDF files - NetCDFFile). -Jeff > Many thanks in advance, > Timmie > > ### data example > > Latitude Longitude value > 45 7 7.65251434 > 45 7.25 6.841345477 > 45 7.5 3.923153289 > 45 7.75 3.644313708 > 45 8 3.550977951 > 45 8.25 3.352525137 > 45 8.5 3.080082094 > 45 8.75 2.971992657 > 45 9 2.998723785 > 45 9.25 3.080082094 > 45 9.5 3.185687405 > 45 9.75 3.102075854 > 45 10 3.185687405 > 45 10.25 3.213960325 > 45 10.5 3.32326373 > 45 10.75 3.465643983 > 45 11 3.612980369 > 45 11.25 3.644313708 > 45 11.5 3.701277511 > 45 11.75 3.923153289 > 45 12 3.797848342 > 45 12.25 3.612980369 > 45 12.5 3.435577844 > 45 12.75 3.294210812 > 45 13 3.26536503 > 45.25 7 6.485050223 > 45.25 7.25 6.343081631 > 45.25 7.5 3.856783573 > 45.25 7.75 3.405725407 > 45.25 8 3.550977951 > 45.25 8.25 3.294210812 > 45.25 8.5 3.294210812 > 45.25 8.75 3.185687405 > 45.25 9 3.15761656 > 45.25 9.25 3.213960325 > 45.25 9.5 3.15761656 > 45.25 9.75 3.32326373 > 45.25 10 3.405725407 > 45.25 10.25 3.495925216 > 45.25 10.5 3.465643983 > 45.25 10.75 3.550977951 > 45.25 11 3.465643983 > 45.25 11.25 3.765429652 > 45.25 11.5 3.95669157 > 45.25 11.75 3.797848342 > 45.25 12 3.923153289 > 45.25 12.25 3.733239867 > 45.25 12.5 3.550977951 > 45.25 12.75 3.520306012 > 45.25 13 3.376085288 > 45.5 7 6.383367092 > 45.5 7.25 6.383367092 > 45.5 7.5 6.009422688 > 45.5 7.75 4.679469855 > 45.5 8 3.435577844 > 45.5 8.25 3.435577844 > 45.5 8.5 3.236725042 > 45.5 8.75 3.236725042 > 45.5 9 3.185687405 > 45.5 9.25 3.102075854 > 45.5 9.5 3.102075854 > 45.5 9.75 3.185687405 > 45.5 10 3.352525137 > 45.5 10.25 3.405725407 > 45.5 10.5 3.376085288 > 45.5 10.75 3.612980369 > 45.5 11 3.520306012 > 45.5 11.25 3.352525137 > 45.5 11.5 3.823949103 > 45.5 11.75 3.856783573 > 45.5 12 3.856783573 > 45.5 12.25 3.765429652 > 45.5 12.5 3.669541114 > 45.5 12.75 3.550977951 > 45.5 13 3.435577844 > 45.75 7 5.309043916 > 45.75 7.25 6.057519881 > 45.75 7.5 5.030958443 > 45.75 7.75 4.836570243 > 45.75 8 4.836570243 > 45.75 8.25 2.724965001 > 45.75 8.5 2.607751091 > 45.75 8.75 3.26536503 > 45.75 9 2.898163214 > 45.75 9.25 2.872155245 > 45.75 9.5 1.893252754 > 45.75 9.75 2.043669061 > 45.75 10 1.75488883 > 45.75 10.25 2.004264146 > 45.75 10.5 2.971992657 > 45.75 10.75 1.804949998 > 45.75 11 2.846334614 > 45.75 11.25 5.519419657 > 45.75 11.5 2.517818813 > 45.75 11.75 3.733239867 > 45.75 12 3.376085288 > 45.75 12.25 3.550977951 > 45.75 12.5 3.612980369 > 45.75 12.75 3.520306012 > 45.75 13 3.495925216 > 46 7 5.06399168 > 46 7.25 4.949174095 > 46 7.5 5.266087828 > 46 7.75 5.352298328 > 46 8 4.757472437 > 46 8.25 2.800325674 > 46 8.5 3.612980369 > 46 8.75 3.185687405 > 46 9 2.323282473 > 46 9.25 1.671485743 > 46 9.5 3.856783573 > 46 9.75 4.572079662 > 46 10 4.679469855 > 46 10.25 4.679469855 > 46 10.5 5.309043916 > 46 10.75 3.294210812 > 46 11 3.405725407 > 46 11.25 3.669541114 > 46 11.5 3.495925216 > 46 11.75 4.255093726 > 46 12 3.495925216 > 46 12.25 3.185687405 > 46 12.5 3.213960325 > 46 12.75 3.550977951 > 46 13 3.520306012 > 46.25 7 1.969297411 > 46.25 7.25 4.908706364 > 46.25 7.5 3.052767233 > 46.25 7.75 3.765429652 > 46.25 8 3.95669157 > 46.25 8.25 5.06399168 > 46.25 8.5 5.266087828 > 46.25 8.75 3.669541114 > 46.25 9 3.185687405 > 46.25 9.25 3.797848342 > 46.25 9.5 3.352525137 > 46.25 9.75 5.439709782 > 46.25 10 5.69098301 > 46.25 10.25 4.949174095 > 46.25 10.5 5.736883145 > 46.25 10.75 5.105542055 > 46.25 11 4.255093726 > 46.25 11.25 3.701277511 > 46.25 11.5 4.255093726 > 46.25 11.75 4.572079662 > 46.25 12 3.98369323 > 46.25 12.25 4.148941623 > 46.25 12.5 3.129746478 > 46.25 12.75 3.236725042 > 46.25 13 3.550977951 > 46.5 7 2.872155245 > 46.5 7.25 3.701277511 > 46.5 7.5 3.15761656 > 46.5 7.75 3.765429652 > 46.5 8 5.18951259 > 46.5 8.25 6.105948261 > 46.5 8.5 5.266087828 > 46.5 8.75 5.69098301 > 46.5 9 6.009422688 > 46.5 9.25 5.147381739 > 46.5 9.5 5.829636932 > 46.5 9.75 5.654489904 > 46.5 10 6.243327668 > 46.5 10.25 5.395852976 > 46.5 10.5 5.736883145 > 46.5 10.75 6.057519881 > 46.5 11 5.147381739 > 46.5 11.25 3.520306012 > 46.5 11.5 3.856783573 > 46.5 11.75 4.148941623 > 46.5 12 4.71833512 > 46.5 12.25 4.71833512 > 46.5 12.5 3.701277511 > 46.5 12.75 3.889851131 > 46.5 13 3.32326373 > 46.75 7 1.859766825 > 46.75 7.25 2.198852355 > 46.75 7.5 2.345277833 > 46.75 7.75 2.517818813 > 46.75 8 3.856783573 > 46.75 8.25 3.856783573 > 46.75 8.5 5.06399168 > 46.75 8.75 4.184077131 > 46.75 9 5.829636932 > 46.75 9.25 3.644313708 > 46.75 9.5 3.765429652 > 46.75 9.75 5.309043916 > 46.75 10 6.009422688 > 46.75 10.25 5.147381739 > 46.75 10.5 5.609155594 > 46.75 10.75 5.783100444 > 46.75 11 5.147381739 > 46.75 11.25 3.581868928 > 46.75 11.5 4.908706364 > 46.75 11.75 3.465643983 > 46.75 12 3.465643983 > 46.75 12.25 4.148941623 > 46.75 12.5 3.98369323 > 46.75 12.75 3.581868928 > 46.75 13 3.644313708 > > > ------------------------------------------------------------------------- > Sponsored by: SourceForge.net Community Choice Awards: VOTE NOW! > Studies have shown that voting for your favorite open source project, > along with a healthy diet, reduces your potential for chronic lameness > and boredom. Vote Now at http://www.sourceforge.net/community/cca08 > _______________________________________________ > Matplotlib-users mailing list > Matplotlib-users@lists.sourceforge.net > https://lists.sourceforge.net/lists/listinfo/matplotlib-users > -- Jeffrey S. Whitaker Phone : (303)497-6313 Meteorologist FAX : (303)497-6449 NOAA/OAR/PSD R/PSD1 Email : [EMAIL PROTECTED] 325 Broadway Office : Skaggs Research Cntr 1D-113 Boulder, CO, USA 80303-3328 Web : http://tinyurl.com/5telg ------------------------------------------------------------------------- Sponsored by: SourceForge.net Community Choice Awards: VOTE NOW! Studies have shown that voting for your favorite open source project, along with a healthy diet, reduces your potential for chronic lameness and boredom. Vote Now at http://www.sourceforge.net/community/cca08 _______________________________________________ Matplotlib-users mailing list Matplotlib-users@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/matplotlib-users