On Tue, Oct 27, 2009 at 7:56 AM, Gökhan Sever <gokhanse...@gmail.com> wrote:
> Hello,
>
> Consider this sample two columns of data:
>
>  999999.9999 999999.9999
>  999999.9999 999999.9999
>  999999.9999 999999.9999
>  999999.9999   1693.9069
>  999999.9999   1676.1059
>  999999.9999   1621.5875
>     651.8040       1542.1373
>     691.0138       1650.4214
>     678.5558       1710.7311
>     621.5777    999999.9999
>     644.8341    999999.9999
>     696.2080    999999.9999
>
> Putting into this data into a file say "sample.data" and loading with:
>
> a,b = np.loadtxt('sample.data', dtype="float").T
>
> I[16]: a
> O[16]:
> array([  1.00000000e+06,   1.00000000e+06,   1.00000000e+06,
>          1.00000000e+06,   1.00000000e+06,   1.00000000e+06,
>          6.51804000e+02,   6.91013800e+02,   6.78555800e+02,
>          6.21577700e+02,   6.44834100e+02,   6.96208000e+02])
>
> I[17]: b
> O[17]:
> array([ 999999.9999,  999999.9999,  999999.9999,    1693.9069,
>           1676.1059,    1621.5875,    1542.1373,    1650.4214,
>           1710.7311,  999999.9999,  999999.9999,  999999.9999])
>
> ### interestingly, the second column is loaded as it is but a values
> reformed a little. Why this could be happening? Any idea? Anyways, back to
> masked arrays:
>
> I[24]: am = ma.masked_values(a, value=999999.9999)
>
> I[25]: am
> O[25]:
> masked_array(data = [-- -- -- -- -- -- 651.804 691.0138 678.5558 621.5777
> 644.8341 696.208],
>              mask = [ True  True  True  True  True  True False False False
> False False False],
>        fill_value = 999999.9999)
>
>
> I[30]: bm = ma.masked_values(b, value=999999.9999)
>
> I[31]: am
> O[31]:
> masked_array(data = [-- -- -- -- -- -- 651.804 691.0138 678.5558 621.5777
> 644.8341 696.208],
>              mask = [ True  True  True  True  True  True False False False
> False False False],
>        fill_value = 999999.9999)
>
>
> So far so good. A few basic checks:
>
> I[33]: am/bm
> O[33]:
> masked_array(data = [-- -- -- -- -- -- 0.422662755126 0.418689311712
> 0.39664667346 -- -- --],
>              mask = [ True  True  True  True  True  True False False False
> True  True  True],
>        fill_value = 999999.9999)
>
>
> I[34]: mean(am/bm)
> O[34]: 0.41266624676580849
>
> Unfortunately, matplotlib.mlab's prctile cannot handle this division:
>
> I[54]: prctile(am/bm, p=[5,25,50,75,95])
> O[54]:
> array([  3.96646673e-01,   6.21577700e+02,   1.00000000e+06,
>          1.00000000e+06,   1.00000000e+06])
>
>
> This also results with wrong looking box-and-whisker plots.
>
>
> Testing further with scipy.stats functions yields expected correct results:

This should not be the correct results if you use scipy.stats.scoreatpercentile,
it doesn't have correct missing value handling, it treats nans or
mask/fill values as regular numbers sorted to the end.

stats.mstats.scoreatpercentile  is the corresponding function for
masked arrays.

(BTW I wasn't able to quickly copy and past your example because
MaskedArrays don't seem to have a constructive __repr__, i.e.
no commas)

I don't know anything about the matplotlib story.

Josef

>
> I[55]: stats.scoreatpercentile(am/bm, per=5)
> O[55]: 0.40877012449846228
>
> I[49]: stats.scoreatpercentile(am/bm, per=25)
> O[49]:
> masked_array(data = --,
>              mask = True,
>        fill_value = 1e+20)
>
> I[56]: stats.scoreatpercentile(am/bm, per=95)
> O[56]:
> masked_array(data = --,
>              mask = True,
>        fill_value = 1e+20)
>
>
> Any confirmation?
>
>
>
>
>
>
>
> --
> Gökhan
>
> _______________________________________________
> NumPy-Discussion mailing list
> numpy-discuss...@scipy.org
> http://mail.scipy.org/mailman/listinfo/numpy-discussion
>
>

------------------------------------------------------------------------------
Come build with us! The BlackBerry(R) Developer Conference in SF, CA
is the only developer event you need to attend this year. Jumpstart your
developing skills, take BlackBerry mobile applications to market and stay 
ahead of the curve. Join us from November 9 - 12, 2009. Register now!
http://p.sf.net/sfu/devconference
_______________________________________________
Matplotlib-users mailing list
Matplotlib-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-users

Reply via email to