On Tue, Oct 27, 2009 at 8:25 AM, <josef.p...@gmail.com> wrote:
> This should not be the correct results if you use
> scipy.stats.scoreatpercentile,
> it doesn't have correct missing value handling, it treats nans or
> mask/fill values as regular numbers sorted to the end.
>
> stats.mstats.scoreatpercentile is the corresponding function for
> masked arrays.
>
>
Thanks for the suggestion. I forgot the existence of such module. It yields
better results.
I[14]: st.mstats.scoreatpercentile(r, per=25)
O[14]:
masked_array(data = 0.401055201111,
mask = False,
fill_value = 1e+20)
I[17]: st.scoreatpercentile(r, per=25)
O[17]:
masked_array(data = --,
mask = True,
fill_value = 1e+20)
I usually fall into traps using masked arrays. Hopefully I will figure out
these before I make funnier mistakes in my analysis.
Besides, it would be nice to have the "per" argument accepts a sequence
instead of a one item. Like matplotlib's prctile. Using it as: ...(array,
per=[5,25,50,75,95]) in a one call.
> (BTW I wasn't able to quickly copy and past your example because
> MaskedArrays don't seem to have a constructive __repr__, i.e.
> no commas)
>
>
You can copy and paste the sample data from this link. When I copied from a
txt file into gmail into somehow distorted the original look of the data.
http://code.google.com/p/ccnworks/source/browse/trunk/sample.data
> I don't know anything about the matplotlib story.
>
> Josef
>
> >
> > I[55]: stats.scoreatpercentile(am/bm, per=5)
> > O[55]: 0.40877012449846228
> >
> > I[49]: stats.scoreatpercentile(am/bm, per=25)
> > O[49]:
> > masked_array(data = --,
> > mask = True,
> > fill_value = 1e+20)
> >
> > I[56]: stats.scoreatpercentile(am/bm, per=95)
> > O[56]:
> > masked_array(data = --,
> > mask = True,
> > fill_value = 1e+20)
> >
> >
> > Any confirmation?
> >
> >
> >
> >
> >
> >
> >
> > --
> > Gökhan
> >
> > _______________________________________________
> > NumPy-Discussion mailing list
> > numpy-discuss...@scipy.org
> > http://mail.scipy.org/mailman/listinfo/numpy-discussion
> >
> >
> _______________________________________________
> NumPy-Discussion mailing list
> numpy-discuss...@scipy.org
> http://mail.scipy.org/mailman/listinfo/numpy-discussion
>
--
Gökhan
------------------------------------------------------------------------------
Come build with us! The BlackBerry(R) Developer Conference in SF, CA
is the only developer event you need to attend this year. Jumpstart your
developing skills, take BlackBerry mobile applications to market and stay
ahead of the curve. Join us from November 9 - 12, 2009. Register now!
http://p.sf.net/sfu/devconference
_______________________________________________
Matplotlib-users mailing list
Matplotlib-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-users