Hi, folks! Let's see, first the tech stuff: Python version - 2.5.4; matplotlib
version - 0.99.0; numpy version - 1.4.0; Platform: 32 bit Windows Vista Home
Premium SP2.
OK, now for the problem: imshow is (indirectly) raising "ValueError: zero-size
array to ufunc.reduce without identity." Here's the traceback:
Traceback (most recent call last):
File "<mycode>", line 108, in <module>
ax.imshow(part2plot, cmap_name, extent = extent)
File "C:\Python254\lib\site-packages\matplotlib\axes.py", line 6261, in imshow
im.autoscale_None()
File "C:\Python254\lib\site-packages\matplotlib\cm.py", line 236, in
autoscale_None
self.norm.autoscale_None(self._A)
File "C:\Python254\lib\site-packages\matplotlib\colors.py", line 792, in
autoscale_None
if self.vmin is None: self.vmin = ma.minimum(A)
File "C:\Python254\Lib\site-packages\numpy\ma\core.py", line 5555, in __call__
return self.reduce(a)
File "C:\Python254\Lib\site-packages\numpy\ma\core.py", line 5570, in reduce
t = self.ufunc.reduce(target, **kargs)
ValueError: zero-size array to ufunc.reduce without identity
Script terminated.
And here's the "local" code (it may be difficult to generate a self-contained
reproducer of the problem, so I'm postponing that 'til it appears absolutely
necessary):
ax.hold(True)
for i in range(4):
for j in range(4):
part2plot = argW[j*ny/4:(j+1)*ny/4, i*nx/4:(i+1)*nx/4]
if N.any(N.logical_not(N.isfinite(part2plot))):
print i, j,
print N.argwhere(N.logical_not(N.isfinite(part2plot)))
extent = (i*nx/4, (i+1)*nx/4, (j+1)*ny/4, j*ny/4)
ax.imshow(part2plot, cmap_name, extent = extent)
I added the print statements because Googling the error, I found an indication
that if my image array contained any NaN's, that might be the cause; sure
enough, I did have some, but I eliminated them, and now nothing gets printed
before the exception is raised, so, unless I'm missing something obvious
(wouldn't be the first time ;-)) something else is the problem.
Any ideas? Thanks!
DG
------------------------------------------------------------------------------
Download Intel® Parallel Studio Eval
Try the new software tools for yourself. Speed compiling, find bugs
proactively, and fine-tune applications for parallel performance.
See why Intel Parallel Studio got high marks during beta.
http://p.sf.net/sfu/intel-sw-dev
_______________________________________________
Matplotlib-users mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/matplotlib-users