On Tue, Aug 21, 2012 at 7:58 AM, Virgil Stokes <v...@it.uu.se> wrote:
> In reference to my previous email.
>
> How can I find the outliers (samples points beyond the whiskers) in the data
> used for the boxplot?
>
> Here is a code snippet that shows how it was used for the timings data (a list
> of 4 sublists (y1,y2,y3,y4), each containing 400,000 real data values),
>    ...
>    ...
>    ...
>    # Box Plots
>    plt.subplot(2,1,2)
>    timings = [y1,y2,y3,y4]
>    pos = np.array(range(len(timings)))+1
>    bp = plt.boxplot( timings, sym='k+', patch_artist=True,
>                     positions=pos, notch=1, bootstrap=5000 )
>
>    plt.xlabel('Algorithm')
>    plt.ylabel('Exection time (sec)')
>    plt.ylim(0.9*ymin,1.1*ymax)
>
>    plt.setp(bp['whiskers'], color='k',  linestyle='-' )
>    plt.setp(bp['fliers'], markersize=3.0)
>    plt.title('Box plots (%4d trials)' %(n))
>    plt.show()
>    ...
>    ...
>    ...
>
> Again my questions:
> 1) How to get the value of the median?
> 2) How to find the outliers (outside the whiskers)?
> 3) How to find the width of the notch?

Ooops. Here's my reply -- this time to whole list
Virgil, the objects stuffed inside the `bp` dictionary should have
methods to retrieve their values. Let's see:

In [35]: x = np.random.lognormal(mean=1.25, sigma=1.35, size=(37,3))

In [36]: bp = plt.boxplot(x, bootstrap=5000, notch=True)

In [37]: # Question 1
    ...: print('medians')
    ...: for n, median in enumerate(bp['medians']):
    ...:     print('%d: %f' % (n, median.get_ydata()[0]))
    ...:
medians
0: 6.339692
1: 3.449320
2: 4.503706

In [38]: # Question 2
    ...: print('fliers')
    ...: for n in range(0, len(bp['fliers']), 2):
    ...:     print('%d: upper outliers = \t' % (n/2,))
    ...:     print(bp['fliers'][n].get_ydata())
    ...:     print('\n%d: lower outliers = \t' % (n/2,))
    ...:     print(bp['fliers'][n+1].get_ydata())
    ...:     print('\n')
    ...:

In [39]: # Question 3
    ...: print('Confidence Intervals')
    ...: for n, box in enumerate(bp['boxes']):
    ...:     print('%d: lower CI: %f' % (n, box.get_ydata()[2]))
    ...:     print('%d: upper CI: %f' % (n, box.get_ydata()[4]))
    ...:
Confidence Intervals
0: lower CI: 1.760701
0: upper CI: 10.102221
1: lower CI: 1.626386
1: upper CI: 5.601927
2: lower CI: 2.173173

Hope that helps,
-paul

------------------------------------------------------------------------------
Live Security Virtual Conference
Exclusive live event will cover all the ways today's security and 
threat landscape has changed and how IT managers can respond. Discussions 
will include endpoint security, mobile security and the latest in malware 
threats. http://www.accelacomm.com/jaw/sfrnl04242012/114/50122263/
_______________________________________________
Matplotlib-users mailing list
Matplotlib-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-users

Reply via email to