If you error bars denote standard deviation of standard error of mean,
shouldn't they be non-symmetric in log scale?

Shawn

On Tue, Apr 7, 2015 at 10:11 AM, Markus Haider <markus.hai...@uibk.ac.at> wrote:
> Hi,
>
> I am trying to make an errorbar plot with a logarithmic x-axis. I have
> symmetric errors in logspace, however if I plot them, the errors are not
> symmetric anymore, as you can see in the enclosed image. Am I
> misunderstanding something or is this a bug?
>
> Thanks for your help,
> Markus
>
> Here the code I used to produce the plot:
>
> import matplotlib.pyplot as plt
>
> import numpy as np
>
> data_x_log = np.array([13.0,15.0])
>
> data_y = np.array([0.5,1])
>
> error_x_log = np.array([0.5,1.])
>
> error_x_lower = 10**(data_x_log-error_x_log)
>
> error_x_upper = 10**(data_x_log+error_x_log)
>
> fig = plt.figure()
>
> ax = fig.add_subplot(111)
>
> ax.errorbar(10**data_x_log,data_y,xerr=[error_x_lower,error_x_upper],ls='',marker='o')
>
> ax.set_xscale('log')
>
> ax.set_xlim([1E11,1E17])
>
> ax.set_ylim([0,2])
>
> plt.savefig('error.png')
>
>
> ------------------------------------------------------------------------------
> BPM Camp - Free Virtual Workshop May 6th at 10am PDT/1PM EDT
> Develop your own process in accordance with the BPMN 2 standard
> Learn Process modeling best practices with Bonita BPM through live exercises
> http://www.bonitasoft.com/be-part-of-it/events/bpm-camp-virtual- event?utm_
> source=Sourceforge_BPM_Camp_5_6_15&utm_medium=email&utm_campaign=VA_SF
> _______________________________________________
> Matplotlib-users mailing list
> Matplotlib-users@lists.sourceforge.net
> https://lists.sourceforge.net/lists/listinfo/matplotlib-users
>



-- 
Yuxiang "Shawn" Wang
Gerling Research Lab
University of Virginia
yw...@virginia.edu
+1 (434) 284-0836
https://sites.google.com/a/virginia.edu/yw5aj/

------------------------------------------------------------------------------
BPM Camp - Free Virtual Workshop May 6th at 10am PDT/1PM EDT
Develop your own process in accordance with the BPMN 2 standard
Learn Process modeling best practices with Bonita BPM through live exercises
http://www.bonitasoft.com/be-part-of-it/events/bpm-camp-virtual- event?utm_
source=Sourceforge_BPM_Camp_5_6_15&utm_medium=email&utm_campaign=VA_SF
_______________________________________________
Matplotlib-users mailing list
Matplotlib-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-users

Reply via email to