Hi Jody, Thank you very much for your help. You are right, this is what I wanted :-)
Cheers, Markus On 2015-04-07 23:33, Jody Klymak wrote: > xerr is +/- relative to the data: > > *xerr*/*yerr*: [ scalar | N, Nx1, or 2xN array-like ] > If a scalar number, len(N) array-like object, or an Nx1 > array-like object, errorbars are drawn at +/-value relative > to the data. > > If a sequence of shape 2xN, errorbars are drawn at -row1 > and +row2 relative to the data. > > I think you want: > > xdat=10**data_x_log > ax.errorbar(10**data_x_log,data_y,xerr=[xdat-error_x_lower,error_x_upper-xdat],ls='',marker='o') > > Cheers, Jody > >> On 7 Apr 2015, at 13:51 PM, Markus Haider <markus.hai...@uibk.ac.at> wrote: >> >> I have the error from a table which is in log units, and the error is >> given to be symmetric in log space. >> >> Cheers, >> Markus >> >> On 2015-04-07 16:40, Yuxiang Wang wrote: >>> Typo - "standard deviation OR standard error of mean", not "OF". >>> >>> Sorry. >>> >>> Shawn >>> >>> >>> On Tue, Apr 7, 2015 at 10:39 AM, Yuxiang Wang <yw...@virginia.edu> wrote: >>>> If you error bars denote standard deviation of standard error of mean, >>>> shouldn't they be non-symmetric in log scale? >>>> >>>> Shawn >>>> >>>> On Tue, Apr 7, 2015 at 10:11 AM, Markus Haider <markus.hai...@uibk.ac.at> >>>> wrote: >>>>> Hi, >>>>> >>>>> I am trying to make an errorbar plot with a logarithmic x-axis. I have >>>>> symmetric errors in logspace, however if I plot them, the errors are not >>>>> symmetric anymore, as you can see in the enclosed image. Am I >>>>> misunderstanding something or is this a bug? >>>>> >>>>> Thanks for your help, >>>>> Markus >>>>> >>>>> Here the code I used to produce the plot: >>>>> >>>>> import matplotlib.pyplot as plt >>>>> >>>>> import numpy as np >>>>> >>>>> data_x_log = np.array([13.0,15.0]) >>>>> >>>>> data_y = np.array([0.5,1]) >>>>> >>>>> error_x_log = np.array([0.5,1.]) >>>>> >>>>> error_x_lower = 10**(data_x_log-error_x_log) >>>>> >>>>> error_x_upper = 10**(data_x_log+error_x_log) >>>>> >>>>> fig = plt.figure() >>>>> >>>>> ax = fig.add_subplot(111) >>>>> >>>>> ax.errorbar(10**data_x_log,data_y,xerr=[error_x_lower,error_x_upper],ls='',marker='o') >>>>> >>>>> ax.set_xscale('log') >>>>> >>>>> ax.set_xlim([1E11,1E17]) >>>>> >>>>> ax.set_ylim([0,2]) >>>>> >>>>> plt.savefig('error.png') >>>>> >>>>> >>>>> ------------------------------------------------------------------------------ >>>>> BPM Camp - Free Virtual Workshop May 6th at 10am PDT/1PM EDT >>>>> Develop your own process in accordance with the BPMN 2 standard >>>>> Learn Process modeling best practices with Bonita BPM through live >>>>> exercises >>>>> http://www.bonitasoft.com/be-part-of-it/events/bpm-camp-virtual- >>>>> event?utm_ >>>>> source=Sourceforge_BPM_Camp_5_6_15&utm_medium=email&utm_campaign=VA_SF >>>>> _______________________________________________ >>>>> Matplotlib-users mailing list >>>>> Matplotlib-users@lists.sourceforge.net >>>>> https://lists.sourceforge.net/lists/listinfo/matplotlib-users >>>>> >>>> >>>> -- >>>> Yuxiang "Shawn" Wang >>>> Gerling Research Lab >>>> University of Virginia >>>> yw...@virginia.edu >>>> +1 (434) 284-0836 >>>> https://sites.google.com/a/virginia.edu/yw5aj/ >>> >> >> ------------------------------------------------------------------------------ >> BPM Camp - Free Virtual Workshop May 6th at 10am PDT/1PM EDT >> Develop your own process in accordance with the BPMN 2 standard >> Learn Process modeling best practices with Bonita BPM through live exercises >> http://www.bonitasoft.com/be-part-of-it/events/bpm-camp-virtual- event?utm_ >> source=Sourceforge_BPM_Camp_5_6_15&utm_medium=email&utm_campaign=VA_SF >> _______________________________________________ >> Matplotlib-users mailing list >> Matplotlib-users@lists.sourceforge.net >> https://lists.sourceforge.net/lists/listinfo/matplotlib-users > -- > Jody Klymak > http://web.uvic.ca/~jklymak/ > > > > > > > ------------------------------------------------------------------------------ > BPM Camp - Free Virtual Workshop May 6th at 10am PDT/1PM EDT > Develop your own process in accordance with the BPMN 2 standard > Learn Process modeling best practices with Bonita BPM through live exercises > http://www.bonitasoft.com/be-part-of-it/events/bpm-camp-virtual- event?utm_ > source=Sourceforge_BPM_Camp_5_6_15&utm_medium=email&utm_campaign=VA_SF > _______________________________________________ > Matplotlib-users mailing list > Matplotlib-users@lists.sourceforge.net > https://lists.sourceforge.net/lists/listinfo/matplotlib-users ------------------------------------------------------------------------------ BPM Camp - Free Virtual Workshop May 6th at 10am PDT/1PM EDT Develop your own process in accordance with the BPMN 2 standard Learn Process modeling best practices with Bonita BPM through live exercises http://www.bonitasoft.com/be-part-of-it/events/bpm-camp-virtual- event?utm_ source=Sourceforge_BPM_Camp_5_6_15&utm_medium=email&utm_campaign=VA_SF _______________________________________________ Matplotlib-users mailing list Matplotlib-users@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/matplotlib-users