Dear Ray,

Thank you very much! It is a very smart way to deal with that. How could I
not realize that in the first place? Thank you very much!

Kind regards,
Jin



2018-04-20 4:51 GMT+10:00 Ray Zimmerman <[email protected]>:

> Dear Jin,
>
> In response to your original question. You are correct. However, if the
> flow limit is binding (which it is when the shadow price is non-zero), then
> the apparent power flowing in the line is equal to RATE_A. So I just use
> RATE_A since it is readily available.
>
>     Ray
>
>
>
> On Apr 12, 2018, at 11:45 PM, Ma Jin <[email protected]> wrote:
>
> Dear Sarmad,
>
> Thank you very much!  The caveats pointed by you are really helpful.
> Thanks!
>
> Kind regards,
> Jin
>
> 2018-04-13 13:16 GMT+10:00 Sarmad Hanif <[email protected]>:
>
>> Dear Jin,
>>
>> Yes, you are right.
>>
>>
>>
>> However according to my experience, you have to be careful regarding the
>> calculation of Jacobian of voltage sensitivities which might be required to
>> translate Lagrange multipliers to LMP components.
>>
>> Matpower can give these sensitivities (Jacobian) from the function
>> makeJac().
>>
>> So if you calculate Jacobian like makeJac(mpc), then it will give you
>> sensitivity at the base case.
>>
>> Hence to get the updated Jacobian (representing the operating
>> conditions), you need to implement something like makeJac(results_pf),
>> where results_pf = runpf(mpc).
>>
>> Another issue, which I believe was corrected by Ray, was that if you have
>> generators in the grid they were taken by-default as PV while making the
>> Jacobian. So you might need to get the updated version of MATPOWER.
>>
>> Maybe Ray could shed some more light on making sure the steps for
>> correctly translating Lagrange multipliers to LMP components.
>>
>>
>>
>> Hope it helps.
>>
>> Best,
>>
>> Sarmad
>>
>> *From:* [email protected] [mailto:
>> [email protected]] *On Behalf Of *Ma Jin
>> *Sent:* Wednesday, 11 April, 2018 5:24 PM
>> *To:* MATPOWER discussion forum
>> *Subject:* Re: Question about shadow price of line flow constraints in
>> AC OPF
>>
>>
>>
>> Dear Sarmad,
>>
>>
>>
>> Thanks! Matpower provides the values of all Kuhn-tucker multipliers and
>> Lagrange multipliers. So it is really a powerful tool which makes
>> decomposition of the price possible if one wants to.
>>
>>
>>
>> Kind regards,
>>
>> Jin
>>
>>
>>
>> 2018-04-11 17:12 GMT+10:00 Sarmad Hanif <[email protected]>:
>>
>> Hi Jin,
>>
>> I couldn’t understand the issue you reported. But according to my
>> knowledge, MATPOWER gives you the final price at the node, it doesn’t
>> calculate individual congestion, loss, energy components.
>>
>> Moreover, for ACOPF, MATPOWER gives you and active ($/MW) and reactive
>> power ($/MVar) marginal prices at respective nodes.
>>
>> Hope it helps.
>>
>>
>>
>> *From:* [email protected] [mailto:
>> [email protected]] *On Behalf Of *Ma Jin
>> *Sent:* Wednesday, 11 April, 2018 8:04 AM
>> *To:* [email protected]
>> *Subject:* Question about shadow price of line flow constraints in AC OPF
>>
>>
>>
>> Dear all,
>>
>>
>>
>> I feel confused about the unit of the shadow price of the line flow
>> constraints in AC based OPF. Since the square of the apparent power is used
>> when building the line flow constraints, the shadow price should be with a
>> unit of $/(MVA*MVA). When it is converted to the shadow price $/MVA,
>> MatPower times the RateA of that line, but for me, it more makes sense if
>> it is multiplied with the apparent power flowing through the line. What is
>> the reason behind multiplying that RateA. Thanks!
>>
>>
>>
>> Kind regards,
>>
>> Jin
>>
>>
>>
>
>
>

Reply via email to