Hello,
my example is a wind farm with 30 turbines and a substation, turbines are
arranged in 4 clusters as shown in the figure and all clusters are grouped
in a substation (transformer between node 31 and 32) after that we find
the line of transmission to the PDL between the nodes 32 and 33. I want to
do a compensation of the reactive power at the two extremities of the
transmission line (image) I took the equations from a code developed to
calculate the load flow AC (in the image the Q1, Q2 depends on the wind
speed
between 0 m/s and 25m/s this is the condition that i find in the code but
in my case the active power of turbines is fixed to 1.46MW for each and it
is not depending on the wind speed).
In my case i want to do the compensation with matpower and i don't know
the values to put for Gs and Bs, here attached my mfile case.
I need help please.
function [baseMVA, bus, gen, branch] = case5_staggmoiouahid
%case 5 nodes Power flow data for 5 bus, 2 generator case.
% Please see 'help caseformat' for details on the case file format.
%
% case file can be used together with dc case files "case5_stagg_....m"
%
% Network data from ...
% G.W. Stagg, A.H. El-Abiad, "Computer methods in power system analysis",
% McGraw-Hill, 1968.
%
% MATPOWER case file data provided by Jef Beerten.
\%% MATPOWER Case Format : Version 1
\%%----- Power Flow Data -----\%%
\%% system MVA base
baseMVA = 90;
\%% bus data
% bus_i type Pd Qd Gs Bs area Vm Va
baseKV zone Vmax Vmin
bus = [
1 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
2 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
3 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
4 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
5 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
6 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
7 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
8 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
9 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
10 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
11 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
12 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
13 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
14 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
15 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
16 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
17 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
18 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
19 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
20 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
21 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
22 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
23 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
24 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
25 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
26 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
27 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
28 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
29 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
30 1 1.4602 0 0 0 1 1 0 33
1 1.1 0.9;
31 1 0 0 0 0 1 1 0 33 1
1.1 0.9;% transf
32 1 0.5 0.2 0 0 1 1 0 132 1 1.1
0.9;%cote ac du convertisseur 1 ac/dc
33 3 0 0 0 0 1 1 0 132 1
1.1 0.9;% cote ac du conv 2 dc/ac
%33 1 0 0 0 0 1 1 0 132 1
1.1 0.9;%pdl
%34 3 0 0 0 0 1 1 0 33 1
1.1 0.9;%pdl
];
%bus(1:30,3)=8;
\%% generator data
% bus Pg Qg Qmax Qmin Vg mBase status
Pmax Pmin
gen = [
%32 0 0 100 -100 1 100 1
50 10;
% 33 0 0 500 -500 1.06 100 1 250 10;
33 0 0 100 -100 1 90 1 50 10;%pdl
reference noeud
];
\%% branch data
% fbus tbus r x b rateA rateB rateC
ratio angle status
branch = [
1 2 0.0062*0.5124 0.0098*0.5124 4.388e-4*0.5124 0 0
0 0 0 1;
2 3 0.0062*0.4853 0.0098*0.4853 4.388e-4*0.4853 0 0
0 0 0 1;
3 4 0.0062*0.5018 0.0098*0.5018 4.388e-4*0.5018 0 0
0 0 0 1;
4 5 0.0062*0.5165 0.0098*0.5165 4.388e-4*0.5165 0 0
0 0 0 1;
5 6 0.0062*0.4995 0.0098*0.4995 4.388e-4*0.4995 0 0
0 0 0 1;
6 7 0.0062*0.4810 0.0098*0.4810 4.388e-4*0.4810 0 0
0 0 0 1;
7 8 0.0062*0.4836 0.0098*0.4836 4.388e-4*0.4836 0 0
0 0 0 1;
9 10 0.0082*0.5119 0.0102*0.5119 3.9439e-4*0.5119 0 0
0 0 0 1;
10 11 0.0082*0.4790 0.0102*0.4790 3.9439e-4*0.4790 0 0
0 0 0 1;
11 12 0.0082*0.5271 0.0102*0.5271 3.9439e-4*0.5271 0 0
0 0 0 1;
12 13 0.0082*0.4926 0.0102*0.4926 3.9439e-4*0.4926 0 0
0 0 0 1;
13 14 0.0082*0.5059 0.0102*0.5059 3.9439e-4*0.5059 0 0
0 0 0 1;
14 15 0.0082*0.5275 0.0102*0.5275 3.9439e-4*0.5275 0 0
0 0 0 1;
16 17 0.0062*0.4950 0.0098*0.4950 4.388e-4*0.4950 0 0
0 0 0 1;
17 18 0.0062*0.5260 0.0098*0.5260 4.388e-4*0.5260 0 0
0 0 0 1;
18 19 0.0062*0.4955 0.0098*0.4955 4.388e-4*0.4955 0 0
0 0 0 1;
19 20 0.0062*0.5174 0.0098*0.5174 4.388e-4*0.5174 0 0
0 0 0 1;
20 21 0.0062*0.5207 0.0098*0.5207 4.388e-4*0.5207 0 0
0 0 0 1;
21 22 0.0062*0.4788 0.0098*0.4788 4.388e-4*0.4788 0 0
0 0 0 1;
22 23 0.0062*0.4738 0.0098*0.4738 4.388e-4*0.4738 0 0
0 0 0 1;
24 25 0.0082*0.4732 0.0102*0.4732 3.9439e-4*0.4732 0 0
0 0 0 1;
25 26 0.0082*0.5062 0.0102*0.5062 3.9439e-4*0.5062 0 0
0 0 0 1;
26 27 0.0082*0.5084 0.0102*0.5084 3.9439e-4*0.5084 0 0
0 0 0 1;
27 28 0.0082*0.5019 0.0102*0.5019 3.9439e-4*0.5019 0 0
0 0 0 1;
28 29 0.0082*0.5118 0.0102*0.5118 3.9439e-4*0.5118 0 0
0 0 0 1;
29 30 0.0082*0.480 0.0102*0.480 3.9439e-4*0.480 0 0
0 0 0 1;
1 31 0.0062*1.8750 0.0098*1.8750 4.388e-4*1.8750 0 0
0 0 0 1;
9 31 0.0082*1.1524 0.0102*1.1524 3.9439e-4*1.1524 0 0
0 0 0 1;
16 31 0.0062*0.3750 0.0098*0.3750 4.388e-4*0.3750 0 0
0 0 0 1;
24 31 0.0082*0.4507 0.0102*0.4507 3.9439e-4*0.4507 0 0
0 0 0 1;
%32 33 0.2428e-3 0.6491e-3 0.0055 0 0 0 0
0 1;
%32 33 0.06 0.18 0.04 0 0 0 0 0
1;
%33 34 0.002 0.084 0 0 0 0 0.9 0
1;
31 32 0.0063 0.09 0 0 0 0 1 0
1;
32 33 0.2428e-3*7.5660 0.6491e-3*7.5660 0.0055*7.5660 0 0
0 0 0 1;
%32 33 0.2428e-3*5.5660 0.6491e-3*5.5660 0.0055*5.5660 0 0
0 0 0 1;
%32 33 0.2428e-3*70 0.6491e-3*70 0.0055*70 0 0
0 0 0 1;
%33 34 0.0063 0.09 0 0 0 0 1 0
1;
];
return;