The AC power flow (runpf) appears to solve just fine.

>> mpc = loadcase('existing_system');
>> mpopt = mpoption('verbose', 1, 'out.all', 0);
>> r = runpf(mpc, mpopt);

MATPOWER Version 7.0b1, 31-Oct-2018 -- AC Power Flow (Newton)

Newton's method power flow converged in 3 iterations.


The OPF (runopf), on the other hand, does not converge, probably because it is 
infeasible.

>> mpopt = mpoption('verbose', 1, 'out.bus', 0, 'out.branch', 0, 'out.sys_sum', 
>> 0);
>> r = runopf(mpc, mpopt);

MATPOWER Version 7.0b1, 31-Oct-2018 -- AC Optimal Power Flow
  AC OPF formulation: polar voltages, power balance eqns
MATPOWER Interior Point Solver -- MIPS, Version 1.3, 30-Oct-2018
 (using built-in linear solver)
Numerically Failed

Did not converge in 5 iterations.

>>>>>  Did NOT converge (0.22 seconds)  <<<<<


The problem of determining the cause of the infeasibility is a good candidate 
for the OPF soft limits feature (newly expanded in v7.0b1).

>> mpc = toggle_softlims(mpc, 'on'); 
>> r = runopf(mpc, mpopt);

MATPOWER Version 7.0b1, 31-Oct-2018 -- AC Optimal Power Flow
  AC OPF formulation: polar voltages, power balance eqns
MATPOWER Interior Point Solver -- MIPS, Version 1.3, 30-Oct-2018
 (using built-in linear solver)
Converged!

Converged in 0.59 seconds
Objective Function Value = 16232.27 $/hr

.
.
.

================================================================================
|     Soft Generator Reactive Power Upper Bounds                               |
================================================================================
Gen     Bus  Generation  Limit   Overload    mu
  #      #    Q (MVAr)  Q (MVAr)  (MVAr)   ($/MVAr)
-----  -----  --------  -------  -------  ---------
    1      1     0.85    -3.50     4.35   1000.000
    2      1     0.85    -3.50     4.35   1000.000
    3      1     0.85    -3.50     4.35   1000.000
                                --------
                       Total:     13.04
.
.
.

================================================================================
|     Soft Branch Flow Limits                                                  |
================================================================================
Brnch   From   To      Flow      Limit   Overload     mu
  #     Bus    Bus     (MVA)     (MVA)     (MVA)    ($/MVA)
-----  -----  -----  --------  --------  --------  ---------
   1      1      2      2.95      1.50      1.45   1000.000
   3      1      4      3.32      2.25      1.07   1000.000
   4      1      5      2.18      1.50      0.68   1000.000
                                         --------
                                Total:      3.19


So, it looks like both the generator QMAX and the branch RATE_A values are too 
restrictive, making the problem infeasible. I’m not sure what the actual 
reactive power range is intended to be, but you currently have QMIN = 0, QMAX = 
–3.5 (less than QMIN!) and QG = 4.5. You want values where QMIN < QG < QMAX.

    Ray


> On Nov 14, 2018, at 5:53 AM, Αμαλία Μαυρογιάννη <[email protected]> wrote:
> 
> I am working on an island system. I make a case where I depict the whole 
> system. The lines are in 15KV and there are 3 generators in 5MW each. I run 
> an AC power flow (runopf)and the message is Did not converge in 5 iterations. 
> I have done the :
>     define_constants;
>     mpcbase = loadcase('casefile');
>     mpcbase.bus(:, PD) = 0;
>     mpcbase.bus(:, QD) = 0;
>     mpcbase.gen(:, PG) = 0;
>     mpctarget = loadcase('casefile');
>     results = runcpf(mpcbase, mpctarget); 
>     results.cpf.max_lam
> 
>  and max_lam=10.5284.
> 
> The runcpf doesn't run at all.
> 
> The case is down.
> 
> Thanks
> Amalia Mavrogianni
> <existing_system.m>

Reply via email to