Twelfth theorem proved. Nonemptiness is not used.

I used  mendpadmlem5a (proved above) instead of  mendpadmlem5 to make the 
proof a little shorter.

${
  $d x y z a b c u v B $.  $d x y z a b c u v .o. $.  $d u v ph $.
  mendpadm.a $e |- B = ( Base ` M ) $.
  mendpadm.b $e |- .o. = ( +g ` M ) $.
  mendpadm.d $e |- ( ph -> M e. Mgm ) $.
  mendpadm.e $e |- ( ph -> A. x e. B A. y e. B A. z e. B ( ( x .o. y ) .o. 
( x .o. ( z .o. y ) ) ) = z ) $.
  $( First part of ~ mendpadmlem8 $)
  mendpadmlem8a $p |- ( ph -> A. x e. B A. y e. B ( x .o. ( x .o. y ) ) = y 
) $=
    ( vu va co wceq wral weq id oveq12d oveq2d vv vb wcel mendpadmlem5a 
eqeq12d
    vc cv wa eqcom bitrdi rspcv mpan9 cbvralvw sylib simpr rspcdva 
mendpadmlem6
    adantr adantlr ad2antrr eqeq1d eqeq2d eqidd simpl rspc2vd adantll mpd 
eqtrd
    oveq1 oveq2 cbvral3vw simplr cmgm mgmcl syl3anc rspc3v ralrimiva 
cbvral2vw
    wi ) 
ALUGZVTUAUGZGNZGNZWAOZUAEPZLEPBUGZWFCUGZGNZGNZWGOZCEPBEPAWELEAVTEUCZUH
    
ZWDUAEWLWAEUCZUHZWCVTVTVTGNZGNZVTWAWOGNZGNZGNZWAWNVTWPWBWRGWLVTWPOZWMAWFWFW
    
FGNZGNZWFOZBEPZWKWTABCDEFGHIJKUDZXCWTBVTEBLQZXCWPVTOWTXFXBWPWFVTXFWFVTXAWOG
    
XFRZXFWFVTWFVTGXGXGSSXGUEWPVTUIUJUKULURWNWAWQVTGWNWAWAWAWAGNZGNZWQAWMWAXIOZ
    
WKAWMUHMUGZXKXKGNZGNZXKOZXJMEWAMUAQZXNXIWAOXJXOXMXIXKWAXOXKWAXLXHGXORZXOXKW
    
AXKWAGXPXPSSXPUEXIWAUIUJAXNMEPZWMAXDXQXEXCXNBMEBMQZXBXMWFXKXRWFXKXAXLGXRRZX
    
RWFXKWFXKGXSXSSSXSUEUMUNURAWMUOUPUSWNXHWOWAGWNXAWGWGGNZOZCEPBEPZXHWOOZAYBWK
    
WMABCDEFGHIJKUQUTWKWMYBYCVSAWKWMUHZYCXHXTOYABCWAVTEEEBUAQZXAXHXTYEWFWAWFWAG
    
YERZYFSVACLQZXTWOXHYGWGVTWGVTGYGRZYHSVBWKWMUOYDYEUHEVCWKWMVDVEVFVGTVHTSWNXK
    
UBUGZGNZXKUFUGZYIGNZGNZGNZYKOZUFEPUBEPMEPZWSWAOZWNWHWFDUGZWGGNZGNZGNZYROZDE
    
PCEPBEPZYPAUUCWKWMKUTUUBYOXKWGGNZXKYSGNZGNZYROYJXKYRYIGNZGNZGNZYROBCDMUBUFE
    
EEXRUUAUUFYRXRWHUUDYTUUEGWFXKWGGVIWFXKYSGVISVACUBQZUUFUUIYRUUJUUDYJUUEUUHGW
    
GYIXKGVJUUJYSUUGXKGWGYIYRGVJTSVADUFQZUUIYNYRYKUUKUUHYMYJGUUKUUGYLXKGYRYKYIG
    
VITTUUKRUEVKUNWNWKWOEUCZWMYPYQVSAWKWMVLZWNFVMUCZWKWKUULAUUNWKWMJUTUUMUUMEFV
    
TVTGHIVNVOWLWMUOYOYQVTYIGNZVTYLGNZGNZYKOWPVTYKWOGNZGNZGNZYKOMUBUFVTWOWAEEEM
    
LQZYNUUQYKUVAYJUUOYMUUPGXKVTYIGVIXKVTYLGVISVAYIWOOZUUQUUTYKUVBUUOWPUUPUUSGY
    
IWOVTGVJUVBYLUURVTGYIWOYKGVJTSVAUFUAQZUUTWSYKWAUVCUUSWRWPGUVCUURWQVTGYKWAWO
    
GVITTUVCRUEVPVOVGVHVQVQWDWJWFWFWAGNZGNZWAOLUABCEELBQZWCUVEWAUVFVTWFWBUVDGUV
    FRVTWFWAGVISVAUACQZUVEWIWAWGUVGUVDWHWFGWAWGWFGVJTUVGRUEVRUN $.

  $( Second part of ~ mendpadmlem8 $)
  mendpadmlem8b $p |- ( ph -> A. x e. B A. y e. B ( ( x .o. y ) .o. y ) = x 
) $=
    ( vu vv cv co wceq wral wcel weq id wa mendpadmlem8a ad2antrr oveq1 
oveq12d
    wi eqeq1d oveq2 oveq2d eqeq12d rspc2v eqcom syl6ib adantll mpd 
mendpadmlem4
    simplr simpr mgmcl syl3anc syl2anc eqtrd ralrimiva oveq1d cbvral2vw 
sylib
    cmgm ) 
ALNZMNZGOZVIGOZVHPZMEQZLEQBNZCNZGOZVOGOZVNPZCEQBEQAVMLEAVHERZUAZVLME
    
VTVIERZUAZVKVJVHVJGOZGOZVHWBVIWCVJGWBVNVPGOZVOPZCEQBEQZVIWCPZAWGVSWAABCDEFG
    
HIJKUBUCVSWAWGWHUFAVSWAUAWGWCVIPZWHWFWIVHVHVOGOZGOZVOPBCVHVIEEBLSZWEWKVOWLV
    
NVHVPWJGWLTVNVHVOGUDUEUGCMSZWKWCVOVIWMWJVJVHGVOVIVHGUHUIWMTUJUKWCVIULUMUNUO
    
UIWBVNVOVNGOZGOZVOPZCEQBEQZWDVHPZAWQVSWAABCDEFGHIJKUPUCWBVJERZVSWQWRUFWBFVG
    
RZVSWAWSAWTVSWAJUCAVSWAUQZVTWAUREFVHVIGHIUSUTXAWPWRVJVOVJGOZGOZVOPBCVJVHEEV
    
NVJPZWOXCVOXDVNVJWNXBGXDTVNVJVOGUHUEUGCLSZXCWDVOVHXEXBWCVJGVOVHVJGUDUIXETUJ
    
UKVAUOVBVCVCVLVRVNVIGOZVIGOZVNPLMBCEELBSZVKXGVHVNXHVJXFVIGVHVNVIGUDVDXHTUJM
    CSZXGVQVNXIXFVPVIVOGVIVOVNGUHXITUEUGVEVF $.

  $( Lemma for mendpadm. Multiplying two times from the left or right by 
the same element gives the original element. $)
  mendpadmlem8 $p |- ( ph -> A. x e. B A. y e. B ( ( x .o. ( x .o. y ) ) = 
y /\ ( ( x .o. y ) .o. y ) = x ) ) $=
    ( cv co wceq wral wa mendpadmlem8a mendpadmlem8b r19.26-2 sylanbrc ) 
ABLZUA
    
CLZGMZGMUBNZCEOBEOUCUBGMUANZCEOBEOUDUEPCEOBEOABCDEFGHIJKQABCDEFGHIJKRUDUEBC
    EEST $.
$}


-- 
You received this message because you are subscribed to the Google Groups 
"Metamath" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To view this discussion visit 
https://groups.google.com/d/msgid/metamath/d665456f-9d8d-4c0d-9d86-1f8d872551f6n%40googlegroups.com.

Reply via email to