Ninth theorem proved:

${
  $d x y z a b v B $.  $d x y z a b v .o. $.  $d v ph $.
  mendpadm.a $e |- B = ( Base ` M ) $.
  mendpadm.b $e |- .o. = ( +g ` M ) $.
  mendpadm.d $e |- ( ph -> M e. Mgm ) $.
  mendpadm.e $e |- ( ph -> A. x e. B A. y e. B A. z e. B ( ( x .o. y ) .o. 
( x .o. ( z .o. y ) ) ) = z ) $.
  $( First part of ~ mendpadmlem5 $)
  mendpadmlem5a $p |- ( ph -> A. x e. B ( x .o. ( x .o. x ) ) = x ) $=
    ( vv va vb cv co wceq wral weq id wcel wa impac mendpadmlem4 adantr 
oveq12d
    idd oveq2 eqeq1d oveq1 oveq2d eqeq12d cbvral2vw sylib rspc2v sylc 
ralrimiva
    cbvralvw ) 
ALOZUSUSGPZGPZUSQZLERBOZVCVCGPZGPZVCQZBERAVBLEAUSEUAZUBZVGVGUBMO
    
ZNOZVIGPZGPZVJQZNERMERZVBAVGVGAVGUGUCVHVCCOZVCGPZGPZVOQZCERBERZVNAVSVGABCDE
    
FGHIJKUDUEVRVMVIVOVIGPZGPZVOQBCMNEEBMSZVQWAVOWBVCVIVPVTGWBTVCVIVOGUHUFUICNS
    
ZWAVLVOVJWCVTVKVIGVOVJVIGUJUKWCTULUMUNVMVBUSVJUSGPZGPZVJQMNUSUSEEMLSZVLWEVJ
    
WFVIUSVKWDGWFTVIUSVJGUHUFUINLSZWEVAVJUSWGWDUTUSGVJUSUSGUJUKWGTULUOUPUQVBVFL
    BELBSZVAVEUSVCWHUSVCUTVDGWHTZWHUSVCUSVCGWIWIUFUFWIULURUN $.

  $d a b ph $.
  $( Second part of ~ mendpadmlem5 $)
  mendpadmlem5b $p |- ( ph -> A. x e. B ( ( x .o. x ) .o. x ) = x ) $=
    ( vv va vb cv co wceq wral weq oveq12d wcel wa mendpadmlem4 adantr id 
oveq2
    eqeq1d oveq1 oveq2d eqeq12d cbvral2vw sylib cmgm w3a 3anim1i 3anidm23 
mgmcl
    simplr simpr eqcomd mendpadmlem5a cbvralvw rspcdva ad2antrr eqtr3d 
rspcimdv
    syl rspcdv mpd ralrimiva sylibr ) 
ALOZVLGPZVLGPZVLQZLERBOZVPGPZVPGPZVPQZBER
    
AVOLEAVLEUAZUBZMOZNOZWBGPZGPZWCQZNERZMERZVOWAVPCOZVPGPZGPZWIQZCERBERZWHAWMV
    
TABCDEFGHIJKUCUDWLWFWBWIWBGPZGPZWIQBCMNEEBMSZWKWOWIWPVPWBWJWNGWPUEZVPWBWIGU
    
FTUGCNSZWOWEWIWCWRWNWDWBGWIWCWBGUHUIWRUEUJUKULWAWGVOMVMEWAFUMUAZVTVTUNZVMEU
    
AAVTWTAWSVTVTJUOUPEFVLVLGHIUQVGWAWBVMQZUBZWFVONVLEAVTXAURXBNLSZUBZWEVNWCVLX
    
DWBVMWDVLGWAXAXCURZXDVLVMGPZWDVLXDVLWCVMWBGXDWCVLXBXCUSZUTXDWBVMXEUTTWAXFVL
    
QZXAXCWAWBWBWBGPZGPZWBQZXHMEVLMLSZXJXFWBVLXLWBVLXIVMGXLUEZXLWBVLWBVLGXMXMTT
    
XMUJWAVPVQGPZVPQZBERZXKMERAXPVTABCDEFGHIJKVAUDXOXKBMEWPXNXJVPWBWPVPWBVQXIGW
    
QWPVPWBVPWBGWQWQTTWQUJVBULAVTUSVCVDVETXGUJVHVFVIVJVSVOBLEBLSZVRVNVPVLXQVQVM
    VPVLGXQVPVLVPVLGXQUEZXRTXRTXRUJVBVK $.

  $( Lemma for mendpadm. Multiplication of ` x ` by ` x .o. x ` gives ` x ` 
. $)
  mendpadmlem5 $p |- ( ph -> A. x e. B ( ( x .o. ( x .o. x ) ) = x /\ ( ( x 
.o. x ) .o. x ) = x ) ) $=
    ( cv co wceq wral wa mendpadmlem5a mendpadmlem5b r19.26 sylanbrc ) 
ABLZUAUA
    GMZGMUANZBEOUBUAGMUANZBEOUCUDPBEOABCDEFGHIJKQABCDEFGHIJKRUCUDBEST $.
$}

Il giorno domenica 8 dicembre 2024 alle 13:54:02 UTC+1 savask ha scritto:

> > As a side note, Tirix is now close to completing the proof of the 
> Eckmann-Hilton argument, and although his version is better organized than 
> mine, it still looks pretty long. I guess now we can say that the short 
> proof on Wikipedia doesn't convey a good idea about the amount of work 
> needed to accomplish that task.
>
> Yes, I'm surprised that this is the case, probably shows the lack of 
> intuition on my side. When I showed the problem set to Mario, he suggested 
> rewriting some statements with class variables, i.e. instead of* "A. a e. 
> B A. b e. B ( a .o. b ) = ( b .o. a)" *one can introduce *"X e. B"* and *"Y 
> e. B"* as hypotheses and write *"( X .o. Y ) = ( Y .o. X )"*. In the end 
> I did that only for a couple of first problems, since I wasn't sure how 
> these additional hypotheses work with scoping etc. Thierry is using that 
> technique in his repository, yet it seems the overall proof length is also 
> large.
>
> I plan to add another 3 "bonus" tasks near the end of next week, asking to 
> prove the Mendelsohn-Padmanabhan identity in a boolean group (so we get a 
> full characterization). Again, this is trivial mathematically but I'm not 
> quite sure it will be trivial in metamath, although we have all the 
> required definitions like group exponent (gEx) ready.
>

-- 
You received this message because you are subscribed to the Google Groups 
"Metamath" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To view this discussion visit 
https://groups.google.com/d/msgid/metamath/8fb3b928-75b7-4ff7-bebc-d05336ce8d6cn%40googlegroups.com.

Reply via email to