Oh yeah this could be. Floating point equality and bitwise equality are not the same thing.
-----Original Message----- From: "Jaime Fernández del Río" <jaime.f...@gmail.com> Sent: 22-8-2014 16:22 To: "Discussion of Numerical Python" <numpy-discussion@scipy.org> Subject: Re: [Numpy-discussion] np.unique with structured arrays I can confirm, the issue seems to be in sorting: >>> np.sort(V_) array([([0.5, 0.0, 1.0],), ([0.5, 0.0, -1.0],), ([0.5, -0.0, 1.0],), ([0.5, -0.0, -1.0],)], dtype=[('v', '<f4', (3,))]) These I think are handled by the generic sort functions, and it looks like the comparison function being used is the one for a VOID dtype with no fields, so it is being done byte-wise, hence the problems with 0.0 and -0.0. Not sure where exactly the bug is, though... Jaime On Fri, Aug 22, 2014 at 6:20 AM, Nicolas P. Rougier <nicolas.roug...@inria.fr> wrote: Hello, I've found a strange behavior or I'm missing something obvious (or np.unique is not supposed to work with structured arrays). I'm trying to extract unique values from a simple structured array but it does not seem to work as expected. Here is a minimal script showing the problem: import numpy as np V = np.zeros(4, dtype=[("v", np.float32, 3)]) V["v"] = [ [0.5, 0.0, 1.0], [0.5, -1.e-16, 1.0], # [0.5, +1.e-16, 1.0] works [0.5, 0.0, -1.0], [0.5, -1.e-16, -1.0]] # [0.5, +1.e-16, -1.0]] works V_ = np.zeros_like(V) V_["v"][:,0] = V["v"][:,0].round(decimals=3) V_["v"][:,1] = V["v"][:,1].round(decimals=3) V_["v"][:,2] = V["v"][:,2].round(decimals=3) print np.unique(V_) [([0.5, 0.0, 1.0],) ([0.5, 0.0, -1.0],) ([0.5, -0.0, 1.0],) ([0.5, -0.0, -1.0],)] While I would have expected: [([0.5, 0.0, 1.0],) ([0.5, 0.0, -1.0],)] Can anyone confirm ? Nicolas _______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion -- (\__/) ( O.o) ( > <) Este es Conejo. Copia a Conejo en tu firma y ayúdale en sus planes de dominación mundial.
_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion