structured arrays are of VOID dtype, but with a non-None names attribute: >>> V_.dtype.num 20 >>> V_.dtype.names ('v',) >>> V_.view(np.void).dtype.num 20 >>> V_.view(np.void).dtype.names >>>
The comparison function uses the STRING comparison function if names is None, or a proper field by field comparison if not, see here: https://github.com/numpy/numpy/blob/master/numpy/core/src/multiarray/arraytypes.c.src#L2675 With a quick look at the source, the only fishy thing I see is that the original array has the sort axis moved to the end of the shape tuple, and is then copied into a contiguous array here: https://github.com/numpy/numpy/blob/master/numpy/core/src/multiarray/item_selection.c#L1151 But that new array should preserve the dtype unchanged, and hence the right compare function should be called. If no one with a better understanding of the internals spots it, I will try to further debug it over the weekend. Jaime On Fri, Aug 22, 2014 at 7:54 AM, Eelco Hoogendoorn < hoogendoorn.ee...@gmail.com> wrote: > Oh yeah this could be. Floating point equality and bitwise equality are > not the same thing. > ------------------------------ > From: Jaime Fernández del Río <jaime.f...@gmail.com> > Sent: 22-8-2014 16:22 > > To: Discussion of Numerical Python <numpy-discussion@scipy.org> > Subject: Re: [Numpy-discussion] np.unique with structured arrays > > I can confirm, the issue seems to be in sorting: > > >>> np.sort(V_) > array([([0.5, 0.0, 1.0],), ([0.5, 0.0, -1.0],), ([0.5, -0.0, 1.0],), > ([0.5, -0.0, -1.0],)], > dtype=[('v', '<f4', (3,))]) > > These I think are handled by the generic sort functions, and it looks like > the comparison function being used is the one for a VOID dtype with no > fields, so it is being done byte-wise, hence the problems with 0.0 and > -0.0. Not sure where exactly the bug is, though... > > Jaime > > > > On Fri, Aug 22, 2014 at 6:20 AM, Nicolas P. Rougier < > nicolas.roug...@inria.fr> wrote: > >> >> Hello, >> >> I've found a strange behavior or I'm missing something obvious (or >> np.unique is not supposed to work with structured arrays). >> >> I'm trying to extract unique values from a simple structured array but it >> does not seem to work as expected. >> Here is a minimal script showing the problem: >> >> import numpy as np >> >> V = np.zeros(4, dtype=[("v", np.float32, 3)]) >> V["v"] = [ [0.5, 0.0, 1.0], >> [0.5, -1.e-16, 1.0], # [0.5, +1.e-16, 1.0] works >> [0.5, 0.0, -1.0], >> [0.5, -1.e-16, -1.0]] # [0.5, +1.e-16, -1.0]] works >> V_ = np.zeros_like(V) >> V_["v"][:,0] = V["v"][:,0].round(decimals=3) >> V_["v"][:,1] = V["v"][:,1].round(decimals=3) >> V_["v"][:,2] = V["v"][:,2].round(decimals=3) >> >> print np.unique(V_) >> [([0.5, 0.0, 1.0],) ([0.5, 0.0, -1.0],) ([0.5, -0.0, 1.0],) ([0.5, -0.0, >> -1.0],)] >> >> >> While I would have expected: >> >> [([0.5, 0.0, 1.0],) ([0.5, 0.0, -1.0],)] >> >> >> Can anyone confirm ? >> >> >> Nicolas >> >> _______________________________________________ >> NumPy-Discussion mailing list >> NumPy-Discussion@scipy.org >> http://mail.scipy.org/mailman/listinfo/numpy-discussion >> >> > > > -- > (\__/) > ( O.o) > ( > <) Este es Conejo. Copia a Conejo en tu firma y ayúdale en sus planes > de dominación mundial. > > _______________________________________________ > NumPy-Discussion mailing list > NumPy-Discussion@scipy.org > http://mail.scipy.org/mailman/listinfo/numpy-discussion > > -- (\__/) ( O.o) ( > <) Este es Conejo. Copia a Conejo en tu firma y ayúdale en sus planes de dominación mundial.
_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion