On Mon, May 25, 2020 at 04:10:45AM +0200, Tomas Vondra wrote:
...
parallel queries
================
And now the fun begins ...
1) small one (SSD, max_parallel_workers_per_gather = 2)
algorithm master tlist prealloc prealloc+tlist
--------------------------------------------------
hash 693 390 177 128
sort 103 99 101 99
This looks pretty nice - the patches have the expected effect, it got
faster than with just a single CPU etc.
2) big one (SATA, max_parallel_workers_per_gather = 16)
algorithm master tlist prealloc prealloc+tlist
--------------------------------------------------
hash ? 25000 ? 3132
sort 248 234 216 200
Well, not that nice :-( The hash queries take so much time that I've
decided not to wait for them and the two numbers are actually just
estimates (after processing just a couple of logical tapes).
Plus it actually gets slower than with serial execution, so what's the
problem here? Especially considering it worked OK on the small machine?
At first I thought it's something about SSD vs. SATA, but it seems to be
more about how we construct the plans, because the plans between the two
machines are very different. And it seems to be depend by the number of
workers per gather - for low number of workers the plan looks like this
(the plans are attached in plans.txt in case the formatting gets broken
by your client):
QUERY PLAN
---------------------------------------------------------------------------------------------------------------
Limit
-> Aggregate
-> Hash Join
Hash Cond: (part.p_partkey = lineitem_1.l_partkey)
Join Filter: (lineitem.l_quantity < ((0.2 *
avg(lineitem_1.l_quantity))))
-> Gather
Workers Planned: 2
-> Nested Loop
-> Parallel Seq Scan on part
Filter: ((p_brand = 'Brand#22'::bpchar) AND
(p_container = 'LG BOX'::bpchar))
-> Index Scan using idx_lineitem_part_supp on
lineitem
Index Cond: (l_partkey = part.p_partkey)
-> Hash
-> Finalize HashAggregate
Group Key: lineitem_1.l_partkey
-> Gather
Workers Planned: 2
-> Partial HashAggregate
Group Key: lineitem_1.l_partkey
-> Parallel Seq Scan on lineitem
lineitem_1
(20 rows)
but then if I crank the number of workers up, it switches to this:
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------
Limit
-> Finalize Aggregate
-> Gather
Workers Planned: 5
-> Partial Aggregate
-> Nested Loop
Join Filter: (part.p_partkey = lineitem.l_partkey)
-> Hash Join
Hash Cond: (part.p_partkey =
lineitem_1.l_partkey)
-> Parallel Seq Scan on part
Filter: ((p_brand =
'Brand#22'::bpchar) AND (p_container = 'LG BOX'::bpchar))
-> Hash
-> HashAggregate
Group Key: lineitem_1.l_partkey
-> Seq Scan on lineitem
lineitem_1
-> Index Scan using idx_lineitem_part_supp on
lineitem
Index Cond: (l_partkey =
lineitem_1.l_partkey)
Filter: (l_quantity < ((0.2 *
avg(lineitem_1.l_quantity))))
(18 rows)
Notice that in the first plan, the hashagg is on top of parallel-aware
path - so each workers builds hashagg only on a subset of data, and also
spills only a fraction of the input rows (so that all workers combined
spill rouhly the "whole" table).
OK, I've done an experiment and re-ran the test with
max_parallel_workers_per_gather = 5
which is the highest value still giving the "good" plan, and the results
look like this:
master tlist prealloc prealloc+tlist
----------------------------------------------------
hash 10535 1044 1723 407
sort 198 196 192 219
which is obviously *way* better than the numbers with more workers:
algorithm master tlist prealloc prealloc+tlist
--------------------------------------------------
hash ? 25000 ? 3132
sort 248 234 216 200
It's still ~2x slower than the sort, so presumably we'll need to tweak
the costing somehow. I do belive this is still due to differences in I/O
patterns, with parallel hashagg probably being a bit more random (I'm
deducing that from SSD not being affected by this).
I'd imagine this is because given the same work_mem value, sort tends to
create "sorted chunks" that are then merged into larger runs, making it
more sequential. OTOH hashagg likely makes it more random with smaller
work_mem values - more batches making it more interleaved / random.
This does not explain why we end up with the "bad" plans, though.
Attached are two files showing how the plan changes for different number
of workers per gather, both for groupagg and hashagg. For groupagg the
plan shape does not change at all, for hashagg it starts as "good" and
then between 5 and 6 switches to "bad" one.
There's another interesting thing I just noticed - as we increase the
number of workers, the cost estimate actually starts to grow at some
point:
workers | plan cost
0 | 23594267
1 | 20155545
2 | 19785306
5 | 22718176 <-
6 | 23063639
10 | 22990594
12 | 22972363
AFAIK this happens because we pick the number of workers simply based on
size of the input relation, which ignores the cost due to sending data
from workers to leaders (parallel_tuple_cost). Which in this case is
quite significant, because each worker produces large number of groups.
I don't think this is causing the issue, though, because the sort plans
behave the same way. (I wonder if we could/should consider different
number of workers, somehow.)
We probably can't see these plans on 12 simply because hashagg would
need more memory than work_mem (especially in parallel mode), so we
simply reject them.
regards
--
Tomas Vondra http://www.2ndQuadrant.com
PostgreSQL Development, 24x7 Support, Remote DBA, Training & Services
test=# set min_parallel_table_scan_size = '1kB';
SET
test=# set min_parallel_index_scan_size = '1kB';
SET
test=# set work_mem = '128MB';
SET
test=# set max_parallel_workers_per_gather = 0;
SET
test=# set enable_hashagg = off;
SET
test=# \i explain/17.sql
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------
Limit (cost=88495966.59..88495966.60 rows=1 width=32)
-> Aggregate (cost=88495966.59..88495966.60 rows=1 width=32)
-> Merge Join (cost=83109553.57..88495602.94 rows=145457 width=8)
Merge Cond: (lineitem_1.l_partkey = part.p_partkey)
Join Filter: (lineitem.l_quantity < ((0.2 *
avg(lineitem_1.l_quantity))))
-> GroupAggregate (cost=83109552.56..86708927.87 rows=14949762
width=36)
Group Key: lineitem_1.l_partkey
-> Sort (cost=83109552.56..84234595.52 rows=450017184
width=9)
Sort Key: lineitem_1.l_partkey
-> Seq Scan on lineitem lineitem_1
(cost=0.00..12936546.84 rows=450017184 width=9)
-> Materialize (cost=1.01..1593253.80 rows=437838 width=21)
-> Nested Loop (cost=1.01..1592159.21 rows=437838
width=21)
-> Index Scan using part_pkey on part
(cost=0.43..689458.90 rows=14594 width=4)
Filter: ((p_brand = 'Brand#22'::bpchar) AND
(p_container = 'LG BOX'::bpchar))
-> Index Scan using idx_lineitem_part_supp on
lineitem (cost=0.57..61.55 rows=30 width=17)
Index Cond: (l_partkey = part.p_partkey)
(16 rows)
test=# set max_parallel_workers_per_gather = 1;
SET
test=# \i explain/17.sql
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------------
Limit (cost=56912954.14..56912954.15 rows=1 width=32)
-> Aggregate (cost=56912954.14..56912954.15 rows=1 width=32)
-> Merge Join (cost=51350528.65..56912590.49 rows=145457 width=8)
Merge Cond: (lineitem_1.l_partkey = part.p_partkey)
Join Filter: (lineitem.l_quantity < ((0.2 *
avg(lineitem_1.l_quantity))))
-> Finalize GroupAggregate (cost=51349527.63..55539987.46
rows=14949762 width=36)
Group Key: lineitem_1.l_partkey
-> Gather Merge (cost=51349527.63..55203617.82
rows=14949762 width=36)
Workers Planned: 1
-> Partial GroupAggregate
(cost=51348527.62..53520769.58 rows=14949762 width=36)
Group Key: lineitem_1.l_partkey
-> Sort (cost=51348527.62..52010317.60
rows=264715991 width=9)
Sort Key: lineitem_1.l_partkey
-> Parallel Seq Scan on lineitem
lineitem_1 (cost=0.00..11083534.91 rows=264715991 width=9)
-> Materialize (cost=1001.02..1179181.76 rows=437838 width=21)
-> Gather Merge (cost=1001.02..1178087.17 rows=437838
width=21)
Workers Planned: 1
-> Nested Loop (cost=1.01..1127830.38 rows=257552
width=21)
-> Parallel Index Scan using part_pkey on
part (cost=0.43..596812.00 rows=8585 width=4)
Filter: ((p_brand = 'Brand#22'::bpchar)
AND (p_container = 'LG BOX'::bpchar))
-> Index Scan using idx_lineitem_part_supp on
lineitem (cost=0.57..61.55 rows=30 width=17)
Index Cond: (l_partkey = part.p_partkey)
(22 rows)
test=# set max_parallel_workers_per_gather = 5;
SET
test=# \i explain/17.sql
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------
Limit (cost=33914092.61..33914092.62 rows=1 width=32)
-> Aggregate (cost=33914092.61..33914092.62 rows=1 width=32)
-> Merge Join (cost=22328104.16..33913728.97 rows=145457 width=8)
Merge Cond: (lineitem_1.l_partkey = part.p_partkey)
Join Filter: (lineitem.l_quantity < ((0.2 *
avg(lineitem_1.l_quantity))))
-> Finalize GroupAggregate (cost=22327103.07..32975474.81
rows=14949762 width=36)
Group Key: lineitem_1.l_partkey
-> Gather Merge (cost=22327103.07..32190612.31
rows=74748810 width=36)
Workers Planned: 5
-> Partial GroupAggregate
(cost=22326103.00..23188000.80 rows=14949762 width=36)
Group Key: lineitem_1.l_partkey
-> Sort (cost=22326103.00..22551111.59
rows=90003437 width=9)
Sort Key: lineitem_1.l_partkey
-> Parallel Seq Scan on lineitem
lineitem_1 (cost=0.00..9336409.37 rows=90003437 width=9)
-> Materialize (cost=1001.09..744832.88 rows=437838 width=21)
-> Gather Merge (cost=1001.09..743738.29 rows=437838
width=21)
Workers Planned: 5
-> Nested Loop (cost=1.01..690011.65 rows=87568
width=21)
-> Parallel Index Scan using part_pkey on
part (cost=0.43..509459.22 rows=2919 width=4)
Filter: ((p_brand = 'Brand#22'::bpchar)
AND (p_container = 'LG BOX'::bpchar))
-> Index Scan using idx_lineitem_part_supp on
lineitem (cost=0.57..61.55 rows=30 width=17)
Index Cond: (l_partkey = part.p_partkey)
(22 rows)
test=# set max_parallel_workers_per_gather = 15;
SET
test=# \i explain/17.sql
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------
Limit (cost=44566651.53..44566651.54 rows=1 width=32)
-> Aggregate (cost=44566651.53..44566651.54 rows=1 width=32)
-> Merge Join (cost=12830532.44..44566287.88 rows=145457 width=8)
Merge Cond: (lineitem_1.l_partkey = part.p_partkey)
Join Filter: (lineitem.l_quantity < ((0.2 *
avg(lineitem_1.l_quantity))))
-> Finalize GroupAggregate (cost=12829531.24..43738926.34
rows=14949762 width=36)
Group Key: lineitem_1.l_partkey
-> Gather Merge (cost=12829531.24..41832831.69
rows=224246430 width=36)
Workers Planned: 15
-> Partial GroupAggregate
(cost=12828530.92..13240411.54 rows=14949762 width=36)
Group Key: lineitem_1.l_partkey
-> Sort (cost=12828530.92..12903533.79
rows=30001146 width=9)
Sort Key: lineitem_1.l_partkey
-> Parallel Seq Scan on lineitem
lineitem_1 (cost=0.00..8736386.46 rows=30001146 width=9)
-> Materialize (cost=1001.20..633940.27 rows=437838 width=21)
-> Gather Merge (cost=1001.20..632845.68 rows=437838
width=21)
Workers Planned: 10
-> Nested Loop (cost=1.01..577204.55 rows=43784
width=21)
-> Parallel Index Scan using part_pkey on
part (cost=0.43..486959.26 rows=1459 width=4)
Filter: ((p_brand = 'Brand#22'::bpchar)
AND (p_container = 'LG BOX'::bpchar))
-> Index Scan using idx_lineitem_part_supp on
lineitem (cost=0.57..61.55 rows=30 width=17)
Index Cond: (l_partkey = part.p_partkey)
(22 rows)
test=# set min_parallel_table_scan_size = '1kB';
SET
test=# set min_parallel_index_scan_size = '1kB';
SET
test=# set work_mem = '128MB';
SET
test=# set max_parallel_workers_per_gather = 0;
SET
test=# \i explain/17.sql
QUERY PLAN
----------------------------------------------------------------------------------------------------------------
Limit (cost=23594267.60..23594267.61 rows=1 width=32)
-> Aggregate (cost=23594267.60..23594267.61 rows=1 width=32)
-> Nested Loop (cost=20113710.42..23593903.95 rows=145457 width=8)
Join Filter: (part.p_partkey = lineitem.l_partkey)
-> Hash Join (cost=20113709.84..22724046.56 rows=14545
width=40)
Hash Cond: (lineitem_1.l_partkey = part.p_partkey)
-> HashAggregate (cost=19581331.82..22002927.78
rows=14949762 width=36)
Group Key: lineitem_1.l_partkey
Planned Partitions: 64
-> Seq Scan on lineitem lineitem_1
(cost=0.00..12936546.84 rows=450017184 width=9)
-> Hash (cost=532195.59..532195.59 rows=14594 width=4)
-> Seq Scan on part (cost=0.00..532195.59
rows=14594 width=4)
Filter: ((p_brand = 'Brand#22'::bpchar) AND
(p_container = 'LG BOX'::bpchar))
-> Index Scan using idx_lineitem_part_supp on lineitem
(cost=0.57..59.68 rows=10 width=17)
Index Cond: (l_partkey = lineitem_1.l_partkey)
Filter: (l_quantity < ((0.2 * avg(lineitem_1.l_quantity))))
(16 rows)
test=# set max_parallel_workers_per_gather = 1;
SET
test=# \i explain/17.sql
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------------
Limit (cost=20155545.75..20155545.76 rows=1 width=32)
-> Aggregate (cost=20155545.75..20155545.76 rows=1 width=32)
-> Nested Loop (cost=18755543.08..20155182.10 rows=145457 width=8)
Join Filter: (part.p_partkey = lineitem.l_partkey)
-> Hash Join (cost=18755542.51..19285324.71 rows=14545
width=40)
Hash Cond: (lineitem_1.l_partkey = part.p_partkey)
-> Finalize HashAggregate (cost=18313351.98..18654393.43
rows=14949762 width=36)
Group Key: lineitem_1.l_partkey
Planned Partitions: 64
-> Gather (cost=14993231.96..17967638.74
rows=14949762 width=36)
Workers Planned: 1
-> Partial HashAggregate
(cost=14992231.96..16471662.54 rows=14949762 width=36)
Group Key: lineitem_1.l_partkey
Planned Partitions: 64
-> Parallel Seq Scan on lineitem
lineitem_1 (cost=0.00..11083534.91 rows=264715991 width=9)
-> Hash (cost=442008.10..442008.10 rows=14594 width=4)
-> Gather (cost=1000.00..442008.10 rows=14594
width=4)
Workers Planned: 1
-> Parallel Seq Scan on part
(cost=0.00..439548.70 rows=8585 width=4)
Filter: ((p_brand = 'Brand#22'::bpchar)
AND (p_container = 'LG BOX'::bpchar))
-> Index Scan using idx_lineitem_part_supp on lineitem
(cost=0.57..59.68 rows=10 width=17)
Index Cond: (l_partkey = lineitem_1.l_partkey)
Filter: (l_quantity < ((0.2 * avg(lineitem_1.l_quantity))))
(23 rows)
test=# set max_parallel_workers_per_gather = 2;
SET
test=# \i explain/17.sql
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------------
Limit (cost=19785306.14..19785306.15 rows=1 width=32)
-> Aggregate (cost=19785306.14..19785306.15 rows=1 width=32)
-> Nested Loop (cost=18268508.46..19784942.50 rows=145457 width=8)
Join Filter: (part.p_partkey = lineitem.l_partkey)
-> Hash Join (cost=18268507.89..18915085.11 rows=14545
width=40)
Hash Cond: (lineitem_1.l_partkey = part.p_partkey)
-> Finalize HashAggregate (cost=17864920.23..18322756.69
rows=14949762 width=36)
Group Key: lineitem_1.l_partkey
Planned Partitions: 64
-> Gather (cost=13081107.01..17173493.74
rows=29899524 width=36)
Workers Planned: 2
-> Partial HashAggregate
(cost=13080107.01..14182541.34 rows=14949762 width=36)
Group Key: lineitem_1.l_partkey
Planned Partitions: 64
-> Parallel Seq Scan on lineitem
lineitem_1 (cost=0.00..10311446.60 rows=187507160 width=9)
-> Hash (cost=403405.23..403405.23 rows=14594 width=4)
-> Gather (cost=1000.00..403405.23 rows=14594
width=4)
Workers Planned: 2
-> Parallel Seq Scan on part
(cost=0.00..400945.83 rows=6081 width=4)
Filter: ((p_brand = 'Brand#22'::bpchar)
AND (p_container = 'LG BOX'::bpchar))
-> Index Scan using idx_lineitem_part_supp on lineitem
(cost=0.57..59.68 rows=10 width=17)
Index Cond: (l_partkey = lineitem_1.l_partkey)
Filter: (l_quantity < ((0.2 * avg(lineitem_1.l_quantity))))
(23 rows)
test=# set max_parallel_workers_per_gather = 5;
SET
test=# \i explain/17.sql
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------
Limit (cost=22718176.57..22718176.59 rows=1 width=32)
-> Aggregate (cost=22718176.57..22718176.59 rows=1 width=32)
-> Nested Loop (cost=20850993.85..22717812.93 rows=145457 width=8)
Join Filter: (part.p_partkey = lineitem.l_partkey)
-> Hash Join (cost=20850993.27..21847955.54 rows=14545
width=40)
Hash Cond: (lineitem_1.l_partkey = part.p_partkey)
-> Finalize HashAggregate (cost=20496155.53..21304377.04
rows=14949762 width=36)
Group Key: lineitem_1.l_partkey
Planned Partitions: 64
-> Gather (cost=10666366.37..18767589.30
rows=74748810 width=36)
Workers Planned: 5
-> Partial HashAggregate
(cost=10665366.37..11291708.30 rows=14949762 width=36)
Group Key: lineitem_1.l_partkey
Planned Partitions: 64
-> Parallel Seq Scan on lineitem
lineitem_1 (cost=0.00..9336409.37 rows=90003437 width=9)
-> Hash (cost=354655.32..354655.32 rows=14594 width=4)
-> Gather (cost=1000.00..354655.32 rows=14594
width=4)
Workers Planned: 5
-> Parallel Seq Scan on part
(cost=0.00..352195.92 rows=2919 width=4)
Filter: ((p_brand = 'Brand#22'::bpchar)
AND (p_container = 'LG BOX'::bpchar))
-> Index Scan using idx_lineitem_part_supp on lineitem
(cost=0.57..59.68 rows=10 width=17)
Index Cond: (l_partkey = lineitem_1.l_partkey)
Filter: (l_quantity < ((0.2 * avg(lineitem_1.l_quantity))))
(23 rows)
test=# set max_parallel_workers_per_gather = 6;
SET
test=# \i explain/17.sql
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------
Limit (cost=23063639.26..23063639.27 rows=1 width=32)
-> Finalize Aggregate (cost=23063639.26..23063639.27 rows=1 width=32)
-> Gather (cost=23063638.62..23063639.23 rows=6 width=32)
Workers Planned: 6
-> Partial Aggregate (cost=23062638.62..23062638.63 rows=1
width=32)
-> Nested Loop (cost=22456094.00..23062578.01 rows=24243
width=8)
Join Filter: (part.p_partkey = lineitem.l_partkey)
-> Hash Join (cost=22456093.43..22917611.75
rows=2424 width=40)
Hash Cond: (part.p_partkey =
lineitem_1.l_partkey)
-> Parallel Seq Scan on part
(cost=0.00..344695.93 rows=2432 width=4)
Filter: ((p_brand = 'Brand#22'::bpchar)
AND (p_container = 'LG BOX'::bpchar))
-> Hash (cost=22152425.40..22152425.40
rows=14949762 width=36)
-> HashAggregate
(cost=19581331.82..22002927.78 rows=14949762 width=36)
Group Key: lineitem_1.l_partkey
Planned Partitions: 64
-> Seq Scan on lineitem
lineitem_1 (cost=0.00..12936546.84 rows=450017184 width=9)
-> Index Scan using idx_lineitem_part_supp on
lineitem (cost=0.57..59.68 rows=10 width=17)
Index Cond: (l_partkey = lineitem_1.l_partkey)
Filter: (l_quantity < ((0.2 *
avg(lineitem_1.l_quantity))))
(19 rows)
test=# set max_parallel_workers_per_gather = 10;
SET
test=# \i explain/17.sql
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------
Limit (cost=22990594.48..22990594.50 rows=1 width=32)
-> Finalize Aggregate (cost=22990594.48..22990594.50 rows=1 width=32)
-> Gather (cost=22990593.42..22990594.43 rows=10 width=32)
Workers Planned: 10
-> Partial Aggregate (cost=22989593.42..22989593.43 rows=1
width=32)
-> Nested Loop (cost=22456094.00..22989557.05 rows=14546
width=8)
Join Filter: (part.p_partkey = lineitem.l_partkey)
-> Hash Join (cost=22456093.43..22902601.22
rows=1454 width=40)
Hash Cond: (part.p_partkey =
lineitem_1.l_partkey)
-> Parallel Seq Scan on part
(cost=0.00..329695.96 rows=1459 width=4)
Filter: ((p_brand = 'Brand#22'::bpchar)
AND (p_container = 'LG BOX'::bpchar))
-> Hash (cost=22152425.40..22152425.40
rows=14949762 width=36)
-> HashAggregate
(cost=19581331.82..22002927.78 rows=14949762 width=36)
Group Key: lineitem_1.l_partkey
Planned Partitions: 64
-> Seq Scan on lineitem
lineitem_1 (cost=0.00..12936546.84 rows=450017184 width=9)
-> Index Scan using idx_lineitem_part_supp on
lineitem (cost=0.57..59.68 rows=10 width=17)
Index Cond: (l_partkey = lineitem_1.l_partkey)
Filter: (l_quantity < ((0.2 *
avg(lineitem_1.l_quantity))))
(19 rows)
test=# set max_parallel_workers_per_gather = 32;
SET
test=# \i explain/17.sql
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------
Limit (cost=22972363.30..22972363.31 rows=1 width=32)
-> Finalize Aggregate (cost=22972363.30..22972363.31 rows=1 width=32)
-> Gather (cost=22972362.02..22972363.23 rows=12 width=32)
Workers Planned: 12
-> Partial Aggregate (cost=22971362.02..22971362.03 rows=1
width=32)
-> Nested Loop (cost=22456094.00..22971331.72 rows=12121
width=8)
Join Filter: (part.p_partkey = lineitem.l_partkey)
-> Hash Join (cost=22456093.43..22898848.59
rows=1212 width=40)
Hash Cond: (part.p_partkey =
lineitem_1.l_partkey)
-> Parallel Seq Scan on part
(cost=0.00..325945.97 rows=1216 width=4)
Filter: ((p_brand = 'Brand#22'::bpchar)
AND (p_container = 'LG BOX'::bpchar))
-> Hash (cost=22152425.40..22152425.40
rows=14949762 width=36)
-> HashAggregate
(cost=19581331.82..22002927.78 rows=14949762 width=36)
Group Key: lineitem_1.l_partkey
Planned Partitions: 64
-> Seq Scan on lineitem
lineitem_1 (cost=0.00..12936546.84 rows=450017184 width=9)
-> Index Scan using idx_lineitem_part_supp on
lineitem (cost=0.57..59.68 rows=10 width=17)
Index Cond: (l_partkey = lineitem_1.l_partkey)
Filter: (l_quantity < ((0.2 *
avg(lineitem_1.l_quantity))))
(19 rows)