Hi,
Dne 2014-06-26 14:10, Pavel Stehule napsal:
Hello all,
today I had to work with one slow query - when I checked different
scenarios I found a dependency on work_mem size - but it is atypical -
bigger work_mem increased query execution 31 minutes (600MB work mem)
and 1 minute (1MB).
The problem described in Pavel's emails (illustrated by the awful
explain plans) is in this part:
-> Hash (cost=881801.58..881801.58 rows=61735 width=8) (actual
time=9076.153..9076.153 rows=3310768 loops=1)
That is, the estimated number of rows is ~60k, but in reality it's
~3.3M.
This then leads to a hash table with small number of buckets (8192)
containing
large number of tuples (~400 in this case) in a linked list. Which
significantly
slows down the lookups during the hash join.
This issue is actually quite common - all it takes is a significant
underestimation of the hashed relation, either because it's a complex
join
(thus inherently difficult to estimate) or because the WHERE conditions
are
not independent (see the example below).
The attached patch (early WIP, after ~30 minutes of hacking) addresses
this by
increasing the number of bucket whenever the average number of tuples
per item
exceeds 1.5x NTUP_PER_BUCKET.
======= Example ========
create table table_a (id int, fk_id int);
create table table_b (fk_id int, val_a int, val_b int);
insert into table_a select i, i from generate_series(1,10000000) s(i);
insert into table_b select i, mod(i,1000), mod(i,1000) from
generate_series(1,10000000) s(i);
analyze table_a;
analyze table_b;
explain analyze select count(*) from table_a join table_b on (table_a.id
= table_b.fk_id) where val_a < 10 and val_b < 10;
without the patch:
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------
Aggregate (cost=385834.56..385834.57 rows=1 width=0) (actual
time=49543.263..49543.264 rows=1 loops=1)
-> Hash Join (cost=204069.89..385831.16 rows=1359 width=0) (actual
time=923.751..49531.554 rows=100000 loops=1)
Hash Cond: (table_a.id = table_b.fk_id)
-> Seq Scan on table_a (cost=0.00..144247.77 rows=9999977
width=4) (actual time=0.104..967.090 rows=10000000 loops=1)
-> Hash (cost=204052.90..204052.90 rows=1359 width=4) (actual
time=923.615..923.615 rows=100000 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 3516kB
-> Seq Scan on table_b (cost=0.00..204052.90 rows=1359
width=4) (actual time=0.086..910.656 rows=100000 loops=1)
Filter: ((val_a < 10) AND (val_b < 10))
Rows Removed by Filter: 9900000
Planning time: 0.271 ms
Execution time: 49545.053 ms
(11 rows)
with the patch:
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------
Aggregate (cost=385834.56..385834.57 rows=1 width=0) (actual
time=9780.346..9780.347 rows=1 loops=1)
-> Hash Join (cost=204069.89..385831.16 rows=1359 width=0) (actual
time=939.297..9772.256 rows=100000 loops=1)
Hash Cond: (table_a.id = table_b.fk_id)
-> Seq Scan on table_a (cost=0.00..144247.77 rows=9999977
width=4) (actual time=0.103..962.446 rows=10000000 loops=1)
-> Hash (cost=204052.90..204052.90 rows=1359 width=4) (actual
time=939.172..939.172 rows=100000 loops=1)
Buckets: 8192 Batches: 1 Memory Usage: 3516kB
-> Seq Scan on table_b (cost=0.00..204052.90 rows=1359
width=4) (actual time=0.064..909.191 rows=100000 loops=1)
Filter: ((val_a < 10) AND (val_b < 10))
Rows Removed by Filter: 9900000
Planning time: 0.276 ms
Execution time: 9782.295 ms
(11 rows)
Time: 9784.392 ms
So the duration improved significantly - from ~52 seconds to ~10
seconds.
The patch is not perfect, it needs a bit more love, as illustrated by
the FIXME/TODO items. Feel free to comment.
regards
Tomas
diff --git a/src/backend/executor/nodeHash.c b/src/backend/executor/nodeHash.c
index 589b2f1..d71b8b9 100644
--- a/src/backend/executor/nodeHash.c
+++ b/src/backend/executor/nodeHash.c
@@ -39,6 +39,7 @@
static void ExecHashIncreaseNumBatches(HashJoinTable hashtable);
+static void ExecHashIncreaseNumBuckets(HashJoinTable hashtable);
static void ExecHashBuildSkewHash(HashJoinTable hashtable, Hash *node,
int mcvsToUse);
static void ExecHashSkewTableInsert(HashJoinTable hashtable,
@@ -682,6 +683,77 @@ ExecHashIncreaseNumBatches(HashJoinTable hashtable)
}
/*
+ * ExecHashIncreaseNumBuckets
+ * increase the original number of buckets in order to reduce
+ * number of tuples per bucket
+ */
+static void
+ExecHashIncreaseNumBuckets(HashJoinTable hashtable)
+{
+ int oldnbuckets = hashtable->nbuckets;
+ int i;
+ HashJoinTuple * oldbuckets = hashtable->buckets;
+
+ /* TODO Maybe it'd be better to resize the buckets in place (should be possible,
+ * but when I tried it I always ended up with a strange infinite loop). */
+
+ MemoryContext oldcxt;
+
+ /* FIXME do nothing if we've decided to shut off bucket count growth */
+
+ /* FIXME safety checks here */
+
+ /* update the hashtable info, so that we can compute buckets etc. */
+ hashtable->log2_nbuckets += 1; /* we've multiplied by 2 */
+ hashtable->nbuckets *= 2;
+
+ Assert(hashtable->nbuckets > 1);
+ Assert(hashtable->nbuckets == (1 << hashtable->log2_nbuckets));
+
+ /* grow the bucket list */
+ oldcxt = MemoryContextSwitchTo(hashtable->batchCxt);
+
+ hashtable->buckets = (HashJoinTuple *) palloc0(hashtable->nbuckets * sizeof(HashJoinTuple));
+
+ MemoryContextSwitchTo(oldcxt);
+
+ /* walk through the old buckets, check if tuples are in the right bucket */
+ for (i = 0; i < oldnbuckets; i++)
+ {
+ HashJoinTuple tuple;
+
+ tuple = oldbuckets[i];
+
+ while (tuple != NULL)
+ {
+ /* save link in case we delete */
+ HashJoinTuple nexttuple = tuple->next;
+ int bucketno;
+ int batchno;
+
+ ExecHashGetBucketAndBatch(hashtable, tuple->hashvalue,
+ &bucketno, &batchno);
+
+ /* move it to the correct bucket */
+ tuple->next = hashtable->buckets[bucketno];
+ hashtable->buckets[bucketno] = tuple;
+
+ /* process the next tuple */
+ tuple = nexttuple;
+
+ }
+
+ }
+
+ pfree(oldbuckets);
+
+ /* TODO disable growth if nbuckets * NTUP_PER_BUCKET reaches work_mem (or something
+ * like that) */
+
+}
+
+
+/*
* ExecHashTableInsert
* insert a tuple into the hash table depending on the hash value
* it may just go to a temp file for later batches
@@ -740,6 +812,17 @@ ExecHashTableInsert(HashJoinTable hashtable,
hashtable->spacePeak = hashtable->spaceUsed;
if (hashtable->spaceUsed > hashtable->spaceAllowed)
ExecHashIncreaseNumBatches(hashtable);
+
+ /* check average number of tuples per bucket, increase (2*nbuckets) if needed */
+ if (hashtable->spaceUsed / hashTupleSize / hashtable->nbuckets > 1.5 * NTUP_PER_BUCKET) {
+
+#ifdef HJDEBUG
+ printf("Increasing nbucket to %d because average per bucket = %d\n",
+ nbuckets, hashtable->spaceUsed / hashTupleSize / hashtable->nbuckets);
+#endif
+ ExecHashIncreaseNumBuckets(hashtable);
+ }
+
}
else
{
--
Sent via pgsql-hackers mailing list (pgsql-hackers@postgresql.org)
To make changes to your subscription:
http://www.postgresql.org/mailpref/pgsql-hackers