Why use {.|.+`%/\1x,100#1 when +`%/101$1x is available?
On Mon, Mar 10, 2014 at 6:55 PM, Devon McCormick <devon...@gmail.com> wrote: > NB. Show 50 digits of approximation of phi > 0j50":{.|.+`%/\1x, 100#1 > 1.61803398874989484820350851924118133676198756188312 > 0j50":{.|.+`%/\1x, 200#1 > 1.61803398874989484820458683436563811772030781841854 > 0j50":{.|.+`%/\1x, 300#1 > 1.61803398874989484820458683436563811772030917980576 > > NB. Generalize to x digits of y 1s approximation of phi > nDigitsPhi=: ((0j1 * [) ": [: {. [: |. [: +`%`:3\ 1x , 1 $~ ])"0 > 50 nDigitsPhi 10 20 > 1.62500000000000000000000000000000000000000000000000 > 1.61797752808988764044943820224719101123595505617978 > > NB. Where they first differ tells us how precise each approximation is: > 2=/\50 nDigitsPhi 100*>:i.3 > 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 > 1 0 0 0 0 1 0 0 0 0 0 0 0 0 > 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 > 1 1 1 1 1 0 0 0 0 0 0 0 0 0 > > 0 i.~"(0 1) 2=/\99 nDigitsPhi 100*>:i.5 > 22 43 64 85 > 2-~/\22 43 64 85 > 21 21 21 > > NB. So, we get about 21 digits for each 100 ones. > > > On Mon, Mar 10, 2014 at 9:34 PM, Roger Hui <rogerhui.can...@gmail.com > >wrote: > > > The best rational approximation to the golden ratio is the ratio of two > > consecutive Fibonacci numbers. > > > > > > > > On Mon, Mar 10, 2014 at 6:31 PM, Linda Alvord <lindaalv...@verizon.net > > >wrote: > > > > > Thanks for your hints. I always wanted to get rational approximations > > for > > > the Golden Section. > > > > > > {.|.+`%/\1x, 300#1 > > > 26099748102093884802012313146549r16130531424904581415797907386349 > > > > > > 32#'O' > > > OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO > > > > > > {.|.+`%/\1x, 400#1 > > > > > > > > > 734544867157818093234908902110449296423351r453973694165307953197296969697410 > > > 619233826 > > > > > > > > > > > > > > > 734544867157818093234908902110449296423351%453973694165307953197296969697410 > > > 619233826 > > > 1.61803 > > > > > > How can I get the best possible decimal approximation (I have 32 bit > > > digits)? > > > > > > Linda > > > > > > > > > > > > -----Original Message----- > > > From: programming-boun...@forums.jsoftware.com > > > [mailto:programming-boun...@forums.jsoftware.com] On Behalf Of EelVex > > > Sent: Monday, March 10, 2014 7:12 PM > > > To: Programming forum > > > Subject: Re: [Jprogramming] Approximating e > > > > > > * Summing infinite series > > > > > > +/%!i.100x > > > +/^ t. i.100x NB. Taylor coefficients > > > %+/((_1&^)%!)i.100x > > > etc > > > > > > * Taking an asymptotic > > > > > > (-^~1-%) 100x > > > ((^~%~^~@>:) - (^~%^~@<:))100x > > > etc > > > > > > * Continued fractions > > > > > > +`%/2 1,2#>:i.100x > > > +`%/2, 2#2+i.100x > > > (+%)/2 1, ,(1 1,~])"0 +:>:i.100x NB. canonical form > > > > > > > > > > > > > > > On Mon, Mar 10, 2014 at 6:38 PM, km <k...@math.uh.edu> wrote: > > > > > > > The rational 2721r1001 approximates e to six, almost seven > decimal > > > > places: > > > > > > > > 0j7 ": (^ 1) ,: 2721r1001 > > > > 2.7182818 > > > > 2.7182817 > > > > > > > > I got 2721r1001 from a continued fraction. How would you look for > > > > rational approximations to e ? > > > > > > > > --Kip Murray > > > > > > > > Sent from my iPad > > > > > ---------------------------------------------------------------------- > > > > For information about J forums see > http://www.jsoftware.com/forums.htm > > > > > > > ---------------------------------------------------------------------- > > > For information about J forums see http://www.jsoftware.com/forums.htm > > > > > > ---------------------------------------------------------------------- > > > For information about J forums see http://www.jsoftware.com/forums.htm > > > > > ---------------------------------------------------------------------- > > For information about J forums see http://www.jsoftware.com/forums.htm > > > > > > -- > Devon McCormick, CFA > ---------------------------------------------------------------------- > For information about J forums see http://www.jsoftware.com/forums.htm > ---------------------------------------------------------------------- For information about J forums see http://www.jsoftware.com/forums.htm