Here's the version which gets just the final ratio. +`%/1x, 400#1 734544867157818093234908902110449296423351r453973694165307953197296969697410 619233826 734544867157818093234908902110449296423351%453973694165307953197296969697410 619233826 1.61803 (32#'O'),' ',32#'O' OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO If I have 32-bit numbers, when does this information become fiction. Also how can I get the best possible and correct decimal approximation from these rational numbers?
Linda ----Original Message----- From: programming-boun...@forums.jsoftware.com [mailto:programming-boun...@forums.jsoftware.com] On Behalf Of Linda Alvord Sent: Monday, March 10, 2014 9:32 PM To: programm...@jsoftware.com Subject: Re: [Jprogramming] Approximating e Thanks for your hints. I always wanted to get rational approximations for the Golden Section. {.|.+`%/\1x, 300#1 26099748102093884802012313146549r16130531424904581415797907386349 32#'O' OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO {.|.+`%/\1x, 400#1 734544867157818093234908902110449296423351r453973694165307953197296969697410 619233826 734544867157818093234908902110449296423351%453973694165307953197296969697410 619233826 1.61803 How can I get the best possible decimal approximation (I have 32 bit digits)? Linda -----Original Message----- From: programming-boun...@forums.jsoftware.com [mailto:programming-boun...@forums.jsoftware.com] On Behalf Of EelVex Sent: Monday, March 10, 2014 7:12 PM To: Programming forum Subject: Re: [Jprogramming] Approximating e * Summing infinite series +/%!i.100x +/^ t. i.100x NB. Taylor coefficients %+/((_1&^)%!)i.100x etc * Taking an asymptotic (-^~1-%) 100x ((^~%~^~@>:) - (^~%^~@<:))100x etc * Continued fractions +`%/2 1,2#>:i.100x +`%/2, 2#2+i.100x (+%)/2 1, ,(1 1,~])"0 +:>:i.100x NB. canonical form On Mon, Mar 10, 2014 at 6:38 PM, km <k...@math.uh.edu> wrote: > The rational 2721r1001 approximates e to six, almost seven decimal > places: > > 0j7 ": (^ 1) ,: 2721r1001 > 2.7182818 > 2.7182817 > > I got 2721r1001 from a continued fraction. How would you look for > rational approximations to e ? > > --Kip Murray > > Sent from my iPad > ---------------------------------------------------------------------- > For information about J forums see http://www.jsoftware.com/forums.htm > ---------------------------------------------------------------------- For information about J forums see http://www.jsoftware.com/forums.htm ---------------------------------------------------------------------- For information about J forums see http://www.jsoftware.com/forums.htm ---------------------------------------------------------------------- For information about J forums see http://www.jsoftware.com/forums.htm