Here's the version which gets just the final ratio.

     +`%/1x, 400#1
734544867157818093234908902110449296423351r453973694165307953197296969697410
619233826
   
 
734544867157818093234908902110449296423351%453973694165307953197296969697410
619233826
1.61803
   
   (32#'O'),' ',32#'O'
   OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
   
If I have 32-bit numbers, when does this information become fiction.  Also
how can I get the best possible and correct decimal approximation from these
rational numbers?

Linda



----Original Message-----
From: programming-boun...@forums.jsoftware.com
[mailto:programming-boun...@forums.jsoftware.com] On Behalf Of Linda Alvord
Sent: Monday, March 10, 2014 9:32 PM
To: programm...@jsoftware.com
Subject: Re: [Jprogramming] Approximating e

Thanks for your hints.  I always wanted to get rational approximations for
the Golden Section.

     {.|.+`%/\1x, 300#1
26099748102093884802012313146549r16130531424904581415797907386349
   
   32#'O'
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
   
   {.|.+`%/\1x, 400#1
734544867157818093234908902110449296423351r453973694165307953197296969697410
619233826
   
 
734544867157818093234908902110449296423351%453973694165307953197296969697410
619233826
1.61803
   
How can I get the best possible decimal approximation (I have 32 bit
digits)?

Linda



-----Original Message-----
From: programming-boun...@forums.jsoftware.com
[mailto:programming-boun...@forums.jsoftware.com] On Behalf Of EelVex
Sent: Monday, March 10, 2014 7:12 PM
To: Programming forum
Subject: Re: [Jprogramming] Approximating e

* Summing infinite series

   +/%!i.100x
   +/^ t. i.100x  NB. Taylor coefficients
%+/((_1&^)%!)i.100x
etc

* Taking an asymptotic

(-^~1-%) 100x
((^~%~^~@>:) - (^~%^~@<:))100x
etc

* Continued fractions

   +`%/2 1,2#>:i.100x
   +`%/2, 2#2+i.100x
   (+%)/2 1, ,(1 1,~])"0 +:>:i.100x   NB. canonical form




On Mon, Mar 10, 2014 at 6:38 PM, km <k...@math.uh.edu> wrote:

> The rational  2721r1001  approximates  e  to six, almost seven decimal
> places:
>
>     0j7 ": (^ 1) ,: 2721r1001
>  2.7182818
>  2.7182817
>
> I got 2721r1001 from a continued fraction.  How would you look for
> rational approximations to  e  ?
>
> --Kip Murray
>
> Sent from my iPad
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm
>
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to