The polynomials have 1 positive integer real root and 2 complex roots
As set up with x(x+1)(x+2)=x^3+3x^2 +2x=720 the real root is 8
For some others
p._990 2 3 1

┌─┬────────────────────────┐

│1│_6j8.60233 _6j_8.60233 9│

└─┴────────────────────────┘

p._6 2 3 1

┌─┬────────────────────────┐

│1│_2j1.41421 _2j_1.41421 1│

└─┴────────────────────────┘

p._24 2 3 1

┌─┬────────────────────────────┐

│1│_2.5j2.39792 _2.5j_2.39792 2│

└─┴────────────────────────────┘

for non special numbers the  real root is negative and non-integer
p.719 2 3 1

┌─┬───────────────────────────────────────┐

│1│_9.99587 3.49793j7.7262 3.49793j_7.7262│

└─┴───────────────────────────────────────┘


p.23 2 3 1

┌─┬───────────────────────────────────────────┐

│1│_3.96101 0.480507j2.36129 0.480507j_2.36129│

└─┴───────────────────────────────────────────┘


p. _721 2 3 1

┌─┬──────────────────────────────────────────┐

│1│_5.50207j7.73342 _5.50207j_7.73342 8.00413│

└─┴──────────────────────────────────────────┘


With the second polynomial, x(x+1)(x-1) the positive real root is the middle number
as it should be.
p. _720 _1 0 1

┌─┬────────────────────────────┐

│1│9 _4.5j7.72981 _4.5j_7.72981│

└─┴────────────────────────────┘


note that in  both  cases the value of the polynomial is negative at x=0
whether there is a case with 3 real roots -I don't know

possibly writing the second case as x^3 =n+x helps (given a real integer x >1 find the

then for n>1
x     x^3    n
2    8       6     for 11*2*3
3    27    24   for 2*3*4
4    64    60   for 3*4*5
9    512 720  for 8*9*10

using x^3=n-3x^2-2x works but is more cumbersome
x    x^3     -(3x^2-2x)    n
1   1         _5                  6  for 1*2*3
8    512    _208            720 for 8*9*10
p.  works more easily in either case - skim off the complex roots.

Don Kelly

On 08/08/2015 8:39 PM, Don Guinn wrote:
Sorry I'm dense. I understand that. But the first polynomial is not
remotely related to the second other than the gcd of both is x-8. Why?
On Aug 8, 2015 8:08 PM, "'Pascal Jasmin' via Programming" <
[email protected]> wrote:

(x-1)x(x+1) or x(x+1)(x+2) and their expansions are algebraic solutions to
special products.  All the solutions posted used one of these 2 forms.
(your example uses the 2nd's expansion)


----- Original Message -----
From: Don Guinn <[email protected]>
To: Programming forum <[email protected]>
Cc:
Sent: Saturday, August 8, 2015 9:53 PM
Subject: Re: [Jprogramming] Detecting special products

​Using polynomials to solve this problem is really neat, but why does it
work? I can't find anything on the internet explaining why it works.

    p._720 2 3 1
+-+----------------------------+
|1|_5.5j7.72981 _5.5j_7.72981 8|
+-+----------------------------+
    p.1;-8 9 10
720 242 27 1

Obviously the polynomial for the roots is quite different from that used
above. There has to be a proof somewhere.​

On Fri, Aug 7, 2015 at 9:47 PM, Don Kelly <[email protected]> wrote:

correction : 'will be the <last> number of the sequence'
in any case for a special number the real root will be an integer.


On 06/08/2015 4:06 PM, Don Kelly wrote:

also try
0=1|( <1; 2) {>p.|.1 3 2,-]720

1_

0=1|( <1; 2) {>p.|.1 3 2,-]719

0

  note that
(<1;2) {>p._y 2 3 1
will return an integer for a special number and this will be the first
number of the sequence
based on x*x+1)*(x+2) -y=0 giving an integral root
p._720 2 3 1

┌─┬────────────────────────────┐

│1│_5.5j7.72981 _5.5j_7.72981 8│

└─┴────────────────────────────┘


a modification to x(x^2-1) gives an integral real root for the middle
root
p. _720 _1 0 1

┌─┬────────────────────────────┐

│1│9 _4.5j7.72981 _4.5j_7.72981│

└─┴────────────────────────────┘

puts the real root first rather than last

As for finding a list of these special numbers-the "stope " function
works well
f=:3^!.1~[:i.]

f 10

0 6 24 60 120 210 336 504 720 990


Don Kelly





On 06/08/2015 1:02 PM, Roger Hui wrote:

     g=: = (^&3 - ])@:(3&(>.@%:))
     g */"1 (10^40 60 80x)+/0 1 2
1 1 1


On Thu, Aug 6, 2015 at 11:23 AM, 'Pascal Jasmin' via Programming <
[email protected]> wrote:

(] = (^&3 - ])@:(1r3 >.@^~ ])) 990


----- Original Message -----
From: Kip Murray <[email protected]>
To: "[email protected]" <[email protected]>
Cc:
Sent: Thursday, August 6, 2015 1:58 PM
Subject: [Jprogramming] Detecting special products

The number  720  is  special: it is  8*9*10  the product of three
successive non-negative integers.  The first few special numbers are

      */"1 [ 0 1 2 +"1 0 i. 10
0 6 24 60 120 210 336 504 720 990

Write a verb  test  that tests whether a non-negative integer is
special:

      test 720
1
      test 0
1
      test 721
0

--Kip Murray



--
Sent from Gmail Mobile
----------------------------------------------------------------------
For information about J forums see
http://www.jsoftware.com/forums.htm

----------------------------------------------------------------------
For information about J forums see
http://www.jsoftware.com/forums.htm
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm


----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to