This file works j804 and j805, when copied and run with F8, you may
need
to fix newlines
NB.---------------------------------------------------------
-------------------
NB. Wicked Tacit Toolkit...
NB.---------------------------------------------------------
-------------------
NB. Load it using 0!:0 or similar or
NB. paste it on an J editing window and use Crtl-A Crtl-E or
NB. of course, load it using a hot key (or replace '=.' by '=:' if you
must)
NB. A word is a noun, verb, adverb or conjunction
(_ o=. @:) (c=. "_) (e=. &.>) (x=. @:[) (y=. @])
an=. <@:((,'0') ,&< ]) NB. Atomizing words (monadic verb)
Cloak=. (0:`)(,^:) NB. Cloaking (the atomic
representaions
of)
NB. adverbs or conjunctions as monadic or
NB. dyadic verbs (adv)
Cloak=. ((5!:1)@:<'Cloak')Cloak NB. Cloak verbing itself! (monadic
ver)
'amper at evoke fix rank tie'=. Cloak o < e o ;: '& @: `: f. " `'
NB. Verbing some adverbs and conjunctions
train=. (evoke&6) :. an f. NB. (`:6) with a convinient obverse
NB. (monadic verb)
box=. (< o train "0) f. NB. Boxing primitives and pro-words
NB. (monadic verb)
af=. an o fix
(a0=. `'') (a1=. (@:[) ((<'&')`) (`:6)) (a2=. (`(<(":0);_)) (`:6))
av=. ((af'a0')`) (`(af'a1')) (`(af'a2') ) (`:6)
NB. Adverbing a monadic verb (adv)
assert 1 4 9 -: 1 2 3 *: adv
aw=. < o ((0;1;0)&{::) NB. Fetching the atomic representation
u (a3=. (o (train o aw f.)) ('av'f.)) (a4=. "_)
adv=. train o ((af'a4') ; ] ; (af'a3')"_) f.av
assert 1 4 9 -: 1 2 3 *: adv
assert 6 -: * (,^:(0:`(<'/'))) adv 1 2 3
assert 0 1 3 -: (*:`(+/\)) (train f. o (0&{ , (<'-') , 1&{)) adv 1 2 3
a3=. (o (aw f.)) ('av'f.)
Adv=. (train f. @:) (train o ((af'a4') ; ] ; (af'a3')"_) f.av)
assert 1 4 9 -: 1 2 3 ((<'*:') ; ] ) Adv
assert 6 -: * (< , ((<'/')"_)) Adv 1
2 3
assert 0 1 3 -: (*:`(+/\)) (0&{ , (<'-') , 1&{)@:(('';1)&{::) Adv 1
2 3
Ver=. Cloak o af f. NB. Verbing after fixing a pro-adverb or
pro-conjunction
NB. (monadic verb)
ver=. Cloak o an f. NB. Verbing after fixing an adverb or conjunction
NB. (monadic verb)
NB. Defining cv in terms of itself...
cv=. ((rank&_) o < o train)f.adv (>@:) NB. First version
cv=. (train f. cv at (<x rank _ c)) f.adv NB. Constant verb
u ( cv=. ( >cv at (<x rank _ c)) f.adv )
NB. Constant word (adv)
NB. (cv is to words as c is to nouns)
assert (CRLF cv _) -: CRLF
assert (u cv _) <adv -: u <adv
assert (!@# cv _) <adv -: !@# <adv
assert (< o ((Ver'cv') o train <'/') _) -: ( < o train (<'/'))
assert (< o ((Ver'cv') o train <'"') _) -: ( < o train (<'"'))
NB. Fetch and From...
pointers=. (<: o - o i.)`i. @.(0<])
Fetch=. (] amper {:: cv)e o pointers f.adv NB. Verbs mnemonics
pointers
NB. (e.g., ( 'u0 u1 u2 u3'=. 4 Fetch ) j ( 'v0 v1 v2 v3'=. _4 Fetch
) )
assert (< o train 3 Fetch) -: ( 0&({::) 1&({::) 2&({::)) (< adv)
assert (< o train _3 Fetch) -: (_3&({::) _2&({::) _1&({::)) (< adv)
From=. (] amper { cv)e o pointers f.adv NB. Verbs mnemonics
pointers
NB. From=. (] ([ amper train y)(({ `'')c))e o i. f. adv
NB. (e.g., ( 'u0 u1 u2 u3'=. 4 From ) j ( 'v0 v1 v2 v3'=. _4 From ) )
assert (< o train 3 From ) -: ( 0&{ 1&{ 2&{ ) (<adv)
assert (< o train _3 From ) -: (_3&{ _2&{ _1&{ ) (<adv)
Left=. (at [cv)e f.adv
Right=. (at ]cv)e f.adv
mRS=. (`'') (<&.:train f.av) (`,)(`]) (`:6) (train f. @:
)(&:(an f.))
NB. Monadic recursion scope
assert (1 + (1:`(* $:@<:)@.*) mRS 4) -: 25 NB. Factorial
fixed
dRS=. (`'') (<&.:train f.av) (`,) (`]) (,`) ([`) (`:6) (train f. @:
)(&:(an f.))
NB. Dyadic recursion scope
assert (3 (1 + (1:`(%~ * $:&:<:)@.(*@:[))dRS) 7) -: 36 NB.
Binomial fixed
mRS is properly assigned and works as intended from file,
mRS
((((((`'')(((`'')(&(<&.:(,^:(0:``:)&6 :.(<@:((,'0') ,&<
])))@:[)))((`_)(`:6))))(`,))(`]))(`:6))(,^:(0:``:)&6 :.(<@:((,'0') ,&<
]))@:))(&:(<@:((,'0') ,&< ])))
but trying to to assign it to this linear representation produces a
syntax error
mRS =: ((((((`'')(((`'')(&(<&.:(,^:(0:``:)&6 :.(<@:((,'0') ,&<
])))@:[)))((`_)(`:6))))(`,))(`]))(`:6))(,^:(0:``:)&6 :.(<@:((,'0') ,&<
]))@:))(&:(<@:((,'0') ,&< ])))
|syntax error
is this a bug in linear representation? is it directly assignable?
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm