The number of triplets is the number of size 3 partitions of 1e6. Using the function in http://code.jsoftware.com/wiki/Essays/Partitions#Partitions_with_k_Parts
pnk=: 4 : 0 " 0 n=. 0>.x [ k=. y if. 1>:n<.k do. x: (0<n)*1=k else. ((n-1) pnk k-1) + (n-k) pnk k end. ) 1e2 pnk 3 833 1e3 pnk 3 83333 1e4 pnk 3 8333333 1e6 pnk 3 |stack error: pnk | ((n-1)pnk k-1)+(n-k) pnk k Judging by the progression, the answer is probably 83333333333. Going by first principles, n pnk k ←→ ((n-1) pnk k-1) + (n-k) pnk k Therefore, n pnk 3 ←→ ((n-1) pnk 2) + (n-3) pnk 3 ←→ (<.(n-1)%2) + (n-3) pnk 3 ←→ +/ <.@(%&2)@<: n - 3*i.<.n-3 +/ <.@(%&2)@<: n - 3*i.<.n-3 [ n=: 1e2 833 +/ <.@(%&2)@<: n - 3*i.<.n-3 [ n=: 1e3 83333 +/ <.@(%&2)@<: n - 3*i.<.n-3 [ n=: 1e4 8333333 +/ <.@(%&2)@<: n - 3*i.<.n-3 [ n=: 1e5 833333333 +/ <.@(%&2)@<: n - 3*i.<.n-3 [ n=: 1e6 83333333333 On Sat, May 19, 2018 at 1:43 PM, Skip Cave <s...@caveconsulting.com> wrote: > Another interesting quora problem: > > How many distinct triplets have a sum of 1,000,000 (provided all numbers > are integers and are positive)? > <https://www.quora.com/qemail/track_click?al_imp= > eyJ0eXBlIjogMzUsICJoYXNoIjogMTcxMDQ0NjU4Mn0%3D&al_pri= > QuestionLinkClickthrough&aoid=oMo937UDzj8&aoty=2&aty=4&click_pos=1&ct= > 1526747413834671&et=103&id=62216bf7b30d40aea1d79bf4401c83 > 17&request_id=289&src=1&st=1526747413838426&stories= > 2518686273&uid=bqluVqSeN78&v=0> > > The obvious straightforward solution would be to use the odometer verb: > > odo=: #: i.@(*/) > > 1e6=+/"1 odo 3#1e6 > > |limit error: odo > > | 1000000=+/"1 odo 3#1000000 > > > Ooops. Unfortunately, I don't have near enough memory to use this approach. > > Any suggestions? > > > Skip > > > > Skip Cave > Cave Consulting LLC > ---------------------------------------------------------------------- > For information about J forums see http://www.jsoftware.com/forums.htm ---------------------------------------------------------------------- For information about J forums see http://www.jsoftware.com/forums.htm