Another factor of 3 or so by making a similar improvement
to sd.  Thus:

sons=: (~. i. [EMAIL PROTECTED]) { a: ,~ (</. [EMAIL PROTECTED])
gen =: 3 : '(*c) #^:_1 (c#i.#y) <@~.@;/. (;y){y [ c=. #&> y'
sd  =: 4 : '(*c) #^:_1 (c#i.#y)     +//. (;y){x [ c=. #&> y'

tsum=: 4 : 0
 z=. x + t=. x sd d=. (sons y) -.&.> i.#y
 while. +./0~:t do.
  z=. z + t=. z sd d=. gen d
 end.
)

   p=: p: inv 1+i.2e4
   n=: 2e4 [EMAIL PROTECTED] 25
   ts 'n tsum p'
0.172833 1.07744e7



----- Original Message -----
From: Roger Hui <[EMAIL PROTECTED]>
Date: Wednesday, March 12, 2008 17:04
Subject: Re: [Jprogramming] tree sum and difference
To: Programming forum <[email protected]>

> On the large example, a factor of about 500 improvement 
> obtains by speeding up a key component:
> 
> gen=: 3 : 0
>  c=. #&> y
>  (*c) #^:_1 (c#i.#y) <@~.@;/. (;y){y
> )
> 
>    ts 'n tsum p'
> 0.622585 1.27693e7
> 
> 
> 
> ----- Original Message -----
> From: Roger Hui <[EMAIL PROTECTED]>
> Date: Wednesday, March 12, 2008 15:21
> Subject: Re: [Jprogramming] tree sum and difference
> To: Programming forum <[email protected]>
> 
> > sons=: (~. i. [EMAIL PROTECTED]) { a: ,~ (</. [EMAIL PROTECTED])
> > gen =: ([: <@~.@; >@[ { ])"0 1~
> > rc  =: [EMAIL PROTECTED] ~.@,&.> ]
> > rtc =: gen^:_ @ rc @ sons
> > 
> > sd  =: (>@] +/@:{ [)"_ 0
> > 
> > tsum=: 4 : 0
> >  z=. x + t=. x sd d=. (sons y) -.&.> i.#y
> >  while. +./0~:t do.
> >   z=. z + t=. z sd d=. gen d
> >  end.
> > )
> > 
> > "sons" computes the list of sons from the parents.
> > "rc" computes the reflexive closure.  "gen" computes 
> > the next generation of descendants from the current 
> > generation.  "rtc" computes the reflexive-transitive
> > closure.
> > 
> > "tsum" adopts and adapts the transitive closure logic.  
> > It computes successive generations of descendants 
> > (pronoun d) and adds their sums to the total.
> > 
> >    p=: p: inv 1+i.100
> >    n=: 100 [EMAIL PROTECTED] 25
> >    (n treesum p) -: n tsum p
> > 1
> >    ts 'n treesum p'
> > 0.000604717 34048
> >    ts 'n tsum p'
> > 0.00328381 56320
> >    
> >    p=: p: inv 1+i.2e4
> >    n=: 2e4 [EMAIL PROTECTED] 25
> >    ts 'n tsum p'
> > 301.378 1.27693e7
> > 
> > For small sets of nodes, the connection matrix approach
> > is more efficent.  For large sets the situation changes.
> > In the last example, *:#n is 4e8 so the connection matrix 
> > approach would require at least that much space.
> > 
> > 
> > 
> > ----- Original Message -----
> > From: Raul Miller <[EMAIL PROTECTED]>
> > Date: Tuesday, March 11, 2008 12:57
> > Subject: [Jprogramming] tree sum and difference
> > To: Programming forum <[email protected]>
> > 
> > > So, let's say that I have a tree structure where 0
> > > is the parent of all other nodes
> > >    parents=: p:inv 1+i.10
> > > and that I have some numbers associated with
> > > the nodes of this tree
> > >    n=: ?.100+i.10
> > > 
> > > I can produce a tree-wise sum, for example:
> > >    connmat=:3 :'(e."0 1/ [:|:{&y^:a:)i.#y'
> > >    treesum=: +/ .* |:@connmat
> > >    parents,n,:n treesum parents
> > >   0   0   1   
> > 2   2 
> > > 3  3  4  4  4
> > >  46  25 101  69 102 9 58 45 40 64
> > > 559 513 488 136 251 9 58 45 40 64
> > > 
> > > I can also find the tree-wise difference, for example:
> > >    treediff=: %. connmat
> > >    559 513 488 136 251 9 58 45 40 64 treediff parents
> > > 46 25 101 69 102 9 58 45 40 64
> > > 
> > > However, it seems that there ought to be faster
> > > approaches for large trees (with hundreds or
> > > thousands of nodes).
> > > 
> > > So, since some people like puzzles, can anyone
> > > come up with faster implementations for treesum
> > > and treediff, for large trees?
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to