Well even this late in my career I still aspire to be cool, so here it
is much as requested, a python routine to make the camera travel from
place to place in your molecule.
The arguments to the routine are :
FIRST: frame number for start of the sequence
NFRAMES : number of frames the sequence takes
SEL : a valid PyMol atom selection, encased in quotes, which defines
the view at the end of the sequence
ZFLAG : a flag to indicate whether the final view should be 'zoomed'
or not.
ZLEVEL : the degree of zoom - exactly the same as the 'buffer'
parameter in PyMol cmd.zoom
The routine generates view matrices that interpolate between the
current view and the view specified by the atom selection, updating the
view as it finishes so it can be applied iteratively to travel from
way-point to way-point.
I've also included a little routine which applies camera_travel
sequentially to each residue along a polypeptide chain - the movie is
quite large, and when running fast on a Mac G5 can make you a little
sea-sick, but it does illustrate the power of the routine. The major
technical problem comes from the need to interpolate general rotation
matrices, which is solved by using a quaternion representation. The
code for this is adapted from an article in a magazine called
GameDeveloper by Nick Bobick. I should add that I don't actually know
how to program in python and have no idea how its 'tuples' work, so
this is a very FORTRAN-like routine - feel free to improve it.
# camera_travel - Laurence Pearl, November 2003
import cmd
import math
def camera_travel(first,nframes=30,sel='(all)',zflag=0,zlevel=2):
# first - start frame
# nframes - duration
# sel - atom selection that defines the orientation at the end of the
sequence
new_view = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
old_view = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
nxt = [1,2,0]
q = [0,0,0,1]
first=int(first)
nframes=int(nframes)
ff=float(1.0/nframes)
old_view = cmd.get_view(2)
# print "view : (%8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f,
%8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f,
%8.3f)" % (old_view)
# print "oldtran : %8.3f %8.3f %8.3f" % (old_view[12], old_view[13],
old_view[14])
# do orient operation on selection
cmd.orient(sel,0)
# if zoom to selection is required add this into view matrix
if zflag != 0:
cmd.zoom(sel,zlevel,0,1)
# get new view
new_view = cmd.get_view()
# capture new zoom/clip parameters
ozc1 = new_view[11]
ozc2 = new_view[15]
ozc3 = new_view[16]
# calculate shift in zoom/clip parameters
dzc1 = (ozc1 - old_view[11]) * ff
dzc2 = (ozc2 - old_view[15]) * ff
dzc3 = (ozc3 - old_view[16]) * ff
ozc1 = old_view[11]
ozc2 = old_view[15]
ozc3 = old_view[16]
# capture new translation vector component
ox = new_view[12]
oy = new_view[13]
oz = new_view[14]
# calculate shift vector
dx = ox - old_view[12]
dy = oy - old_view[13]
dz = oz - old_view[14]
dx = dx*ff
dy = dy*ff
dz = dz*ff
ox = old_view[12]
oy = old_view[13]
oz = old_view[14]
# capture old rotation matrix component
# m[0][0] = v[0] m[0][1] = v[1] m[0][2] = v[2]
# m[1][0] = v[3] m[1][1] = v[4] m[1][2] = v[5]
# m[2][0] = v[6] m[2][1] = v[7] m[2][2] = v[8]
# convert to quaternion form
tr = old_view[0]+old_view[4]+old_view[8]
if tr > 0.0 :
s = math.sqrt(tr + 1.0)
qw1 = s / 2.0
s = 0.5 / s
qx1 = (old_view[5] - old_view[7]) * s
qy1 = (old_view[6] - old_view[2]) * s
qz1 = (old_view[1] - old_view[3]) * s
else :
i = 0
if (old_view[4] > old_view[0]):
i = 1
if (old_view[8] > old_view[i+3*i]):
i = 2
j = nxt[i]
k = nxt[j]
s = math.sqrt ((old_view[i+i*3] - (old_view[j+j*3] +
old_view[k+k*3])) + 1.0)
q[i] = s * 0.5
if (s != 0.0):
s = 0.5 / s
q[3] = (old_view[k+3*j] - old_view[j+3*k]) * s
q[j] = (old_view[j+3*i] + old_view[i+3*j]) * s
q[k] = (old_view[k+3*i] + old_view[i+3*k]) * s
qx1 = q[0]
qy1 = q[1]
qz1 = q[2]
qw1 = q[3]
# capture new rotation matrix component
# m[0][0] = v[0] m[0][1] = v[1] m[0][2] = v[2]
# m[1][0] = v[3] m[1][1] = v[4] m[1][2] = v[5]
# m[2][0] = v[6] m[2][1] = v[7] m[2][2] = v[8]
# convert to quaternion form
tr = new_view[0]+ new_view[4]+ new_view[8]
if tr > 0.0 :
s = math.sqrt(tr + 1.0)
qw2 = s / 2.0
s = 0.5 / s
qx2 = (new_view[5] - new_view[7]) * s
qy2 = (new_view[6] - new_view[2]) * s
qz2 = (new_view[1] - new_view[3]) * s
else :
i = 0
if (new_view[4] > new_view[0]):
i = 1
if (new_view[8] > new_view[i+3*i]):
i = 2
j = nxt[i]
k = nxt[j]
s = math.sqrt ((new_view[i+i*3] - (new_view[j+j*3] +
new_view[k+k*3])) + 1.0)
q[i] = s * 0.5
if (s != 0.0):
s = 0.5 / s
q[3] = (new_view[k+3*j] - new_view[j+3*k]) * s
q[j] = (new_view[j+3*i] + new_view[i+3*j]) * s
q[k] = (new_view[k+3*i] + new_view[i+3*k]) * s
qx2 = q[0]
qy2 = q[1]
qz2 = q[2]
qw2 = q[3]
# calc cosine
cosom = qx1 * qx2 + qy1 * qy2 + qz1 * qz2 + qw1 * qw2
# adjust signs
if (cosom < 0.0):
cosom = -cosom
to0 = -qx2
to1 = -qy2
to2 = -qz2
to3 = -qw2
else:
to0 = qx2
to1 = qy2
to2 = qz2
to3 = qw2
# calc coefficients
omega = math.acos(cosom)
sinom = math.sin(omega)
# restore old view
cmd.set_view("%8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f,
%8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f" %
(old_view[0],old_view[1],old_view[2],old_view[3],old_view[4],old_view[5]
,old_view[6],old_view[7],old_view[8],old_view[9],old_view[10],old_view[1
1],old_view[12],old_view[13],old_view[14],old_view[15],old_view[16],old_
view[17]) )
# loop interpolating over nframes generating interpolated quaternion
a = 0
while a < (nframes+1) :
scale0 = math.sin((1.0 - float(a*ff)) * omega) / sinom
scale1 = math.sin(float(a*ff) * omega) / sinom
rx = scale0 * qx1 + scale1 * to0;
ry = scale0 * qy1 + scale1 * to1;
rz = scale0 * qz1 + scale1 * to2;
rw = scale0 * qw1 + scale1 * to3;
# convert back to matrix
x2 = rx + rx
y2 = ry + ry
z2 = rz + rz
xx = rx * x2
xy = rx * y2
xz = rx * z2
yy = ry * y2
yz = ry * z2
zz = rz * z2
wx = rw * x2
wy = rw * y2
wz = rw * z2
nv0 = 1.0 - (yy + zz)
nv3 = xy - wz
nv6 = xz + wy
nv1 = xy + wz
nv4 = 1.0 - (xx + zz)
nv7 = yz - wx
nv2 = xz - wy
nv5 = yz + wx
nv8 = 1.0 - (xx + yy)
# update translation vector
ox = ox + dx
oy = oy + dy
oz = oz + dz
# update zoom/clip parameters if required
if zflag != 0:
ozc1 = ozc1 + dzc1
ozc2 = ozc2 + dzc2
ozc3 = ozc3 + dzc3
cmd.mdo("%d" % (first),"set_view (%8.3f, %8.3f, %8.3f, %8.3f, %8.3f,
%8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f,
%8.3f, %8.3f, %8.3f)" %
(nv0,nv1,nv2,nv3,nv4,nv5,nv6,nv7,nv8,old_view[9],old_view[10],ozc1,ox,oy
,oz,ozc2,ozc3,old_view[17]))
a = a + 1
first = first + 1
cmd.set_view("%8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f,
%8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f, %8.3f" %
(nv0,nv1,nv2,nv3,nv4,nv5,nv6,nv7,nv8,old_view[9],old_view[10],ozc1,ox,oy
,oz,ozc2,ozc3,old_view[17]))
# SEQUENCE VISITOR
ires = 1
fr=1
res=" "
while ires < 215:
res = "resi %d" % (ires)
camera_travel(fr,9,res,1,2)
cmd.mdo("%d" % (fr+10),"show sticks,(resi %d and not n;c,n,o)" %
(ires))
fr = fr + 15
ires = ires + 1
On Thursday, November 13, 2003, at 09:24 PM, classen wrote:
When making a movie It would be cool if you could set way-points to
create a
sophisticated "tour"
of your molecule.
Each way-point would be a different view of your molecule.
Then you could specify the number of frames between any two way-points
(views). Each frame
would be a specified amount of time and by changing the number of
frames you
would change the
timing for that particular section of the movie.
Press the play button and voila your tour begins.... zooming in,
rotating,
zooming back out, etc.
Would this be difficult to implement?
Regards,
Scott Classen
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Scott Classen, Ph.D.
ACS Postdoctoral Fellow
Department of Molecular & Cell Biology
University of California, Berkeley
237 Hildebrand Hall #3206
Berkeley, CA 94720-3206
LAB 510.643.9491
FAX 510.643.9290
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-------------------------------------------------------
This SF.Net email sponsored by: ApacheCon 2003,
16-19 November in Las Vegas. Learn firsthand the latest
developments in Apache, PHP, Perl, XML, Java, MySQL,
WebDAV, and more! http://www.apachecon.com/
_______________________________________________
PyMOL-users mailing list
PyMOL-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/pymol-users
------------------------------------------------------------------------
--
Laurence H. Pearl
Section of Structural Biology, Institute of Cancer Research
Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
Phone +44-207-970 6045 : Secretary +44-207-970 6046
FAX +44-207-970 6051 : E-Mail laurence.pe...@icr.ac.uk
------------------------------------------------------------------------
--
" Live Simply and do Serious Things .. " - Dorothy Crowfoot Hodgkin
------------------------------------------------------------------------
--