`If you do not have a closed form for T(E) you cannot calculate the exact`

`value of I(V).`

Anyway. Assuming T is integrable you can approximate I(V).

1. Way to do:

`interpolate T(E) by a polynomial P and integrate P. For this you need`

`the equation (coefficients and exponents) of P. Integrating is easy`

`after that.`

2. other way:

`Use Stair-functions: you can approximate the Value of IV() by the sum`

`over T(E_i) * (E_{i+1} - E_i) s.t. E_0 = E_F-\frac{eV}{2} and E_n =`

`E_F+\frac{eV}{2}.`

3 one more way: use a computer algebra system like sage. bg, Johannes On 16.05.2014 10:49, Enlong Liu wrote:

Dear All, I have a question about the integration with Python. The equation is as below: and I want to get values of I with respect of V. E_F is known. But for T(E), I don't have explicit equation, but a .dat file containing two columns, the first is E, and the second is T(E). It is also in the attachment for reference. So is it possible to do integration in Python? Thanks a lot for your help! Best regards, -- Faculty of Engineering@K.U. Leuven BIOTECH@TU Dresden Email:liuenlon...@gmail.com <mailto:liuenlon...@gmail.com>; enlong....@student.kuleuven.be <mailto:enlong....@student.kuleuven.be>; enlong....@biotech.tu-dresden.de <mailto:enlong....@biotech.tu-dresden.de> Mobile Phone: +4917666191322 Mailing Address: Zi. 0108R, Budapester Straße 24, 01069, Dresden, Germany

-- Johannes Schneider Webentwicklung johannes.schnei...@galileo-press.de Tel.: +49.228.42150.xxx Galileo Press GmbH Rheinwerkallee 4 - 53227 Bonn - Germany Tel.: +49.228.42.150.0 (Zentrale) .77 (Fax) http://www.galileo-press.de/ Geschäftsführer: Tomas Wehren, Ralf Kaulisch, Rainer Kaltenecker HRB 8363 Amtsgericht Bonn -- https://mail.python.org/mailman/listinfo/python-list