On 10/14/23 03:01, Paolo Bonzini wrote:
Instructions in VEX exception class 6 generally look at the value of
VEX.W.  Note that the manual places some instructions incorrectly in
class 4, for example VPERMQ which has no non-VEX encoding and no legacy
SSE analogue.  AMD does a mess of its own, as documented in the comment
that this patch adds.

Most of them are checked for VEX.W=0, and are listed in the manual
(though with an omission) in table 2-16; VPERMQ and VPERMPD check for
VEX.W=1, which is only listed in the instruction description.  Others,
such as VPSRLV, VPSLLV and the FMA3 instructions, use VEX.W to switch
between a 32-bit and 64-bit operation.

Fix more of the class 4/class 6 mismatches, and implement the check for
VEX.W in TCG.

Signed-off-by: Paolo Bonzini <pbonz...@redhat.com>
---
  target/i386/tcg/decode-new.c.inc | 133 +++++++++++++++++++++----------
  target/i386/tcg/decode-new.h     |   6 ++
  2 files changed, 99 insertions(+), 40 deletions(-)

diff --git a/target/i386/tcg/decode-new.c.inc b/target/i386/tcg/decode-new.c.inc
index 790339eaf25..850271e0898 100644
--- a/target/i386/tcg/decode-new.c.inc
+++ b/target/i386/tcg/decode-new.c.inc
@@ -43,6 +43,47 @@
   * There are a couple cases in which instructions (e.g. MOVD) write the
   * whole XMM or MM register but are established incorrectly in the manual
   * as "d" or "q".  These have to be fixed for the decoder to work correctly.
+ *
+ * Speaking about imprecisions in the manual, the decoder treats all
+ * exception-class 4 instructions as having an optional VEX prefix, and
+ * all exception-class 6 instructions as having a mandatory VEX prefix.
+ * This is true except for a dozen instructions; these are in exception
+ * class 4 but do not ignore the VEX.W bit (which does not even exist
+ * without a VEX prefix).  These instructions are mostly listed in Intel's
+ * table 2-16, but with a few exceptions.
+ *
+ * The AMD manual has more precise subclasses for exceptions, and unlike Intel
+ * they list the VEX.W requirements in the exception classes as well (except
+ * when they don't).  AMD describes class 6 as "AVX Mixed Memory Argument"
+ * without defining what a mixed memory argument is, but still use 4 as the
+ * primary exception class... except when they don't.
+ *
+ * The summary is:
+ *                       Intel     AMD         VEX.W           note
+ * -------------------------------------------------------------------
+ * vpblendd              4         4J          0
+ * vpblendvb             4         4E-X        0               (*)
+ * vpbroadcastq          6         6D          0               (+)
+ * vpermd/vpermps        4         4H          0               (§)
+ * vpermq/vpermpd        4         4H-1        1               (§)
+ * vpermilpd/vpermilps   4         6E          0               (^)
+ * vpmaskmovd            6         4K          significant     (^)
+ * vpsllv                4         4K          significant
+ * vpsrav                4         4J          0
+ * vpsrlv                4         4K          significant
+ * vtestps/vtestpd       4         4G          0
+ *
+ *    (*)  AMD lists VPBLENDVB as related to SSE4.1 PBLENDVB, which may
+ *         explain why it is considered exception class 4.  However,
+ *         Intel says that VEX-only instructions should be in class 6...
+ *
+ *    (+)  Not found in Intel's table 2-16
+ *
+ *    (§)  4H and 4H-1 do not mention VEX.W requirements, which are
+ *         however present in the description of the instruction
+ *
+ *    (^)  these are the two cases in which Intel and AMD disagree on the
+ *         primary exception class

Oof.

Acked-by: Richard Henderson <richard.hender...@linaro.org>


r~

Reply via email to