Dear Alina

If I understand you correctly you cannot just have a single predicted curve but one for each level of your factor.


On 09/08/2017 16:24, Alina Vodonos Zilberg wrote:
Hi,

I am performing meta-regression using linear mixed-effect model with the
lme() function  that has two fixed effect variables;one as a log
transformed variable (x)  and one as factor (y) variable, and two nested
random intercept terms.

I want to save the predicted values from that model and show the log curve
in a plot ; predicted~log(x)

mod<-lme(B~log(x)+as.factor(y), random=~1|cohort/Study,
weights=varFixed(~I(SE^2)), na.action=na.omit, data=subset(meta),
          control = lmeControl(sigma = 1, apVar = FALSE))
summary(mod)

newdat <- data.frame(x=seq(min(meta$x), max(meta$x),,118))  # I have 118
observations. #How do I add the factor variable to my newdat?
newdat$pred <- predict(mod, newdat,level = 0,type="response")

plot(B ~ x, data=meta)
lines(B ~ x, data=newdat)

Can you please assist me ?

Thank you!

Alina

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

---
This email has been checked for viruses by AVG.
http://www.avg.com



--
Michael
http://www.dewey.myzen.co.uk/home.html

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to