Dear colleagues, I have performed the same analysis using the GLM module of three statistical softwares: SYSTAT 10, JMP 4.0.2 and R 1.6.2 (see below for more details). Although SYSTAT and R give roughly the same level of significance for all variables, JMP yield a 20 percent difference in probability for a categorical variable. In fact, this difference is so important that I can call this variable significant. Incidentally, Tukey's test is in accordance with this result. Which statistical software should I believe?
Thank you in advance for your insight. Yves Claveau DETAILS ON PERFORMED STATISTICAL ANALYSES The categorical variable I am writing about is ESP The model used is: ptro=CONSTANT+classl+ht+esp+classl*ht+classl*esp+ht*esp+classl*ht*esp Where: - ptro is the dependent variable - CONSTANT the constant in the model (defaut procedure) - classl a categorical variable with two classes - ht a continuous variable - esp a categorical variable with two classes The results for each package are: R 1.6.2 Call: glm(formula = PTRO ~ ESP. * HT * CLASSL., family = gaussian, data = dataa) Deviance Residuals: Min 1Q Median 3Q Max -20.21973 -4.41060 -0.03971 4.77046 14.29097 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 35.54604 4.65265 7.640 3.41e-09 *** ESP -13.12051 12.32455 -1.065 0.294 HT 0.08005 0.04374 1.830 0.075 . CLASSL 1.09480 5.54809 0.197 0.845 ESP:HT 0.01694 0.12375 0.137 0.892 ESP:CLASSL 5.89693 15.41378 0.383 0.704 HT:CLASSL -0.01952 0.04682 -0.417 0.679 ESP:HT:CLASSL -0.05547 0.13217 -0.420 0.677 --- Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 (Dispersion parameter for gaussian family taken to be 59.17901) Null deviance: 4567.3 on 45 degrees of freedom Residual deviance: 2248.8 on 38 degrees of freedom AIC: 327.46 Number of Fisher Scoring iterations: 2 SYSTAT 10 Dep Var: PTRO N: 49 Multiple R: 0.7241 Squared multiple R: 0.5244 Analysis of Variance Source Sum-of-Squares df Mean-Square F-ratio P ESP 113.6878 1 113.6878 1.6551 0.2055 CLASSL 20.6118 1 20.6118 0.3001 0.5868 HT 239.7713 1 239.7713 3.4908 0.0689 CLASSL*HT 26.3909 1 26.3909 0.3842 0.5388 CLASSL*ESP 5.9755 1 5.9755 0.0870 0.7695 ESP*HT 2.6415 1 2.6415 0.0385 0.8455 CLASSL*ESP*HT 12.9459 1 12.9459 0.1885 0.6665 Error 2816.1893 41 68.6875 JMP 4 RSquare 0.52438 RSquare Adj 0.443177 Root Mean Square Error 8.287795 Mean of Response 42.78898 Observations (or Sum Wgts) 49 Analysis of Variance Source DF Sum of Squares Mean Square F Ratio Model 7 3104.9018 443.557 6.4576 Error 41 2816.1893 68.688 Prob > F C. Total 48 5921.0910 <.0001 Effect Tests Source Nparm DF Sum of Squares F Ratio Prob > F ESP 1 1 636.09249 9.2607 0.0041 CLASSL 1 1 8.26185 0.1203 0.7305 HT 1 1 239.77125 3.4908 0.0689 HT*CLASSL 1 1 26.39087 0.3842 0.5388 ESP*CLASSL 1 1 12.18491 0.1774 0.6758 ESP*HT 1 1 2.64154 0.0385 0.8455 ESP*HT*CLASSL 1 1 12.94593 0.1885 0.6665 __________________________________________________________ Lèche-vitrine ou lèche-écran ? magasinage.yahoo.ca ______________________________________________ [EMAIL PROTECTED] mailing list https://www.stat.math.ethz.ch/mailman/listinfo/r-help