On Mon, 6 Oct 2003, [iso-8859-1] Yves Claveau wrote: > Dear colleagues, > I have performed the same analysis using the GLM > module of three statistical softwares: SYSTAT 10, JMP > 4.0.2 and R 1.6.2 (see below for more details). > Although SYSTAT and R give roughly the same level of > significance for all variables, JMP yield a 20 percent > difference in probability for a categorical variable. > In fact, this difference is so important that I can > call this variable significant. Incidentally, Tukey's > test is in accordance with this result. Which > statistical software should I believe?
It looks at though you have asked for three different analyses from the three packages. Certainly the analysis you asked R for is not the same as the others. If you run the anova() function on your model in R you should get one of the other two analyses. I think Systat gives the things SAS calls Type II sums of squares, in which case JMP is presumably giving real sums of squares and will agree with anova(). =thomas > Thank you in advance for your insight. > > Yves Claveau > > > > DETAILS ON PERFORMED STATISTICAL ANALYSES > > The categorical variable I am writing about is ESP > > The model used is: > > ptro=CONSTANT+classl+ht+esp+classl*ht+classl*esp+ht*esp+classl*ht*esp > > Where: > - ptro is the dependent variable > - CONSTANT the constant in the model (defaut > procedure) > - classl a categorical variable with two classes > - ht a continuous variable > - esp a categorical variable with two classes > > > The results for each package are: > > R 1.6.2 > > Call: > glm(formula = PTRO ~ ESP. * HT * CLASSL., family = > gaussian, > data = dataa) > > Deviance Residuals: > Min 1Q Median 3Q Max > > -20.21973 -4.41060 -0.03971 4.77046 14.29097 > > > Coefficients: > Estimate Std. Error t value > Pr(>|t|) > (Intercept) 35.54604 4.65265 7.640 3.41e-09 > *** > ESP -13.12051 12.32455 -1.065 0.294 > > HT 0.08005 0.04374 1.830 0.075 . > CLASSL 1.09480 5.54809 0.197 0.845 > ESP:HT 0.01694 0.12375 0.137 0.892 > ESP:CLASSL 5.89693 15.41378 0.383 0.704 > HT:CLASSL -0.01952 0.04682 -0.417 0.679 > > ESP:HT:CLASSL -0.05547 0.13217 -0.420 0.677 > > --- > Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' > 0.1 ` ' 1 > > (Dispersion parameter for gaussian family taken to be > 59.17901) > > Null deviance: 4567.3 on 45 degrees of freedom > Residual deviance: 2248.8 on 38 degrees of freedom > AIC: 327.46 > > Number of Fisher Scoring iterations: 2 > > > SYSTAT 10 > > Dep Var: PTRO N: 49 Multiple R: 0.7241 Squared > multiple R: 0.5244 > > Analysis of Variance > Source Sum-of-Squares df Mean-Square F-ratio P > > ESP 113.6878 1 113.6878 1.6551 > 0.2055 > CLASSL 20.6118 1 20.6118 0.3001 > 0.5868 > HT 239.7713 1 239.7713 3.4908 > 0.0689 > CLASSL*HT 26.3909 1 26.3909 0.3842 > 0.5388 > CLASSL*ESP 5.9755 1 5.9755 0.0870 0.7695 > ESP*HT 2.6415 1 2.6415 0.0385 0.8455 > CLASSL*ESP*HT 12.9459 1 12.9459 0.1885 > 0.6665 > > Error 2816.1893 41 68.6875 > > > JMP 4 > > RSquare 0.52438 > RSquare Adj 0.443177 > Root Mean Square Error 8.287795 > Mean of Response 42.78898 > Observations (or Sum Wgts) 49 > > Analysis of Variance > Source DF Sum of Squares Mean Square F Ratio > Model 7 3104.9018 443.557 6.4576 > Error 41 2816.1893 68.688 Prob > F > C. Total 48 5921.0910 <.0001 > > Effect Tests > Source Nparm DF Sum of Squares F Ratio Prob > F > > ESP 1 1 636.09249 9.2607 0.0041 > CLASSL 1 1 8.26185 0.1203 0.7305 > HT 1 1 239.77125 3.4908 0.0689 > HT*CLASSL 1 1 26.39087 0.3842 0.5388 > ESP*CLASSL 1 1 12.18491 0.1774 0.6758 > ESP*HT 1 1 2.64154 0.0385 0.8455 > ESP*HT*CLASSL 1 1 12.94593 0.1885 0.6665 > > > > > __________________________________________________________ > Lèche-vitrine ou lèche-écran ? > magasinage.yahoo.ca > > ______________________________________________ > [EMAIL PROTECTED] mailing list > https://www.stat.math.ethz.ch/mailman/listinfo/r-help > Thomas Lumley Assoc. Professor, Biostatistics [EMAIL PROTECTED] University of Washington, Seattle ______________________________________________ [EMAIL PROTECTED] mailing list https://www.stat.math.ethz.ch/mailman/listinfo/r-help