Hello Folks, Very new to R so bear with me, running 5.2 on XP. Trying to do a zero-inflated negative binomial regression on placental scar data as dependent. Lactation, location, number of tick larvae present and mass of mouse are independents. Dataframe and attributes below:
Location Lac Scars Lar Mass Lacfac 1 Tullychurry 0 0 15 13.87 0 2 Somerset 0 0 0 15.60 0 3 Tollymore 0 0 3 16.43 0 4 Tollymore 0 0 0 16.55 0 5 Caledon 0 0 0 17.47 0 6 Hillsborough 1 5 0 18.18 1 7 Caledon 0 0 1 19.06 0 8 Portglenone 0 4 0 19.10 0 9 Portglenone 0 5 0 19.13 0 10 Tollymore 0 5 3 19.50 0 11 Hillsborough 1 5 0 19.58 1 12 Portglenone 0 4 0 19.76 0 13 Caledon 0 8 0 19.97 0 14 Hillsborough 1 4 0 20.02 1 15 Tullychurry 0 3 3 20.13 0 16 Hillsborough 1 5 0 20.18 1 17 LoughNavar 1 5 0 20.20 1 18 Tollymore 0 0 1 20.24 0 19 Hillsborough 1 5 0 20.48 1 20 Caledon 0 4 1 20.56 0 21 Caledon 0 3 2 20.58 0 22 Tollymore 0 4 3 20.58 0 23 Tollymore 0 0 2 20.88 0 24 Hillsborough 1 0 0 21.01 1 25 Portglenone 0 5 0 21.08 0 26 Tullychurry 0 2 5 21.28 0 27 Ballysallagh 1 4 0 21.59 1 28 Caledon 0 0 1 21.68 0 29 Hillsborough 1 5 0 22.09 1 30 Tullychurry 0 5 5 22.28 0 31 Tullychurry 1 6 75 22.43 1 32 Ballysallagh 1 5 0 22.57 1 33 Ballysallagh 1 4 0 22.67 1 34 LoughNavar 1 5 3 22.71 1 35 Hillsborough 1 4 0 23.01 1 36 Caledon 0 0 3 23.08 0 37 LoughNavar 1 5 0 23.53 1 38 Ballysallagh 1 4 0 23.55 1 39 Portglenone 1 6 0 23.61 1 40 Mt.Stewart 0 3 0 23.70 0 41 Somerset 0 5 0 23.83 0 42 Ballysallagh 1 5 0 23.93 1 43 Ballysallagh 1 5 0 24.01 1 44 Caledon 0 0 3 24.14 0 45 LoughNavar 0 6 0 24.30 0 46 LoughNavar 1 5 0 24.34 1 47 Hillsborough 1 4 0 24.45 1 48 Caledon 0 3 2 24.55 0 49 Tullychurry 0 5 44 24.83 0 50 Hillsborough 1 5 0 24.86 1 51 Ballysallagh 1 5 0 25.02 1 52 Tullychurry 0 0 9 25.27 0 53 Mt.Stewart 0 5 0 25.31 0 54 LoughNavar 1 4 8 25.43 1 55 Somerset 1 0 0 25.58 1 56 Hillsborough 1 5 0 25.82 1 57 Portglenone 1 2 0 26.02 1 58 Ballysallagh 1 5 0 26.19 1 59 Mt.Stewart 1 0 0 26.66 1 60 Randalstown 1 0 1 26.70 1 61 Somerset 0 4 0 27.01 0 62 Mt.Stewart 0 4 0 27.05 0 63 Somerset 0 3 0 27.10 0 64 Somerset 0 6 0 27.34 0 65 Somerset 0 0 0 27.87 0 66 LoughNavar 1 5 1 28.01 1 67 Tullychurry 1 6 42 28.55 1 68 Hillsborough 1 5 0 28.84 1 69 Portglenone 1 4 0 29.00 1 70 Somerset 1 4 0 31.87 1 71 Ballysallagh 1 5 0 33.06 1 72 LoughNavar 1 4 0 33.24 1 73 Somerset 1 4 0 33.36 1 alan : 'data.frame': 73 obs. of 6 variables: $ Location: Factor w/ 10 levels "Ballysallagh",..: 10 8 9 9 2 3 2 6 6 9 ... $ Lac : int 0 0 0 0 0 1 0 0 0 0 ... $ Scars : int 0 0 0 0 0 5 0 4 5 5 ... $ Lar : int 15 0 3 0 0 0 1 0 0 3 ... $ Mass : num 13.9 15.6 16.4 16.6 17.5 ... $ Lacfac : Factor w/ 2 levels "0","1": 1 1 1 1 1 2 1 1 1 1 ... The syntax I used to create the model is: zinb.zc <- zicounts(resp=Scars~.,x =~Location + Lar + Mass + Lar:Mass + Location:Mass,z =~Location + Lar + Mass + Lar:Mass + Location:Mass, data=alan) The error given is: Error in optim(par = parm, fn = neg.like, gr = neg.grad, hessian = TRUE, : non-finite value supplied by optim In addition: Warning message: fitted probabilities numerically 0 or 1 occurred in: glm.fit(zz, 1 - pmin(y, 1), family = binomial()) I understand this is a problem with the model I specified, could anyone help out?? Many thanks Alan Harrison Quercus Queen's University Belfast MBC, 97 Lisburn Road Belfast BT9 7BL T: 02890 972219 M: 07798615682 [[alternative HTML version deleted]] ______________________________________________ R-help@stat.math.ethz.ch mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.