I using the *R* package *spgwr *to perform geographically weighted regression (GWR). I want to apply the model parameters to a finer spatial scale but I am receiving this error: *Error in validObject(.Object): invalid class “SpatialPointsDataFrame” object: number of rows in data.frame and SpatialPoints don't match*.
When I use another package for GWR, called *GWmodel*, I do not have this issue. For example using the *GWmodel*, I do: library(GWmodel) library(sp) library(raster) ghs = raster("path/ghs.tif") # fine resolution raster regpoints <- as(ghs, "SpatialPoints") block.data = read.csv(file = "path/block.data.csv") coordinates(block.data) <- c("x", "y") proj4string(block.data) <- "EPSG:7767" eq1 <- ntl ~ ghs abw = bw.gwr(eq1, data = block.data, approach = "AIC", kernel = "gaussian", adaptive = TRUE, p = 2, parallel.method = "omp", parallel.arg = "omp") ab_gwr = gwr.basic(eq1, data = block.data, regression.points = regpoints, bw = abw, kernel = "gaussian", adaptive = TRUE, p = 2, F123.test = FALSE, cv = FALSE, parallel.method = "omp", parallel.arg = "omp") ab_gwr sp <- ab_gwr$SDF sf <- st_as_sf(sp) # intercept intercept = as.data.frame(sf$Intercept) intercept = SpatialPointsDataFrame(data = intercept, coords = regpoints) gridded(intercept) <- TRUE intercept <- raster(intercept) raster::crs(intercept) <- "EPSG:7767" intercept = resample(intercept, ghs, method = "bilinear") # slope slope = as.data.frame(sf$ghs) slope = SpatialPointsDataFrame(data = slope, coords = regpoints) gridded(slope) <- TRUE slope <- raster(slope) raster::crs(slope) <- "EPSG:7767" slope = resample(slope, ghs, method = "bilinear") gwr_pred = intercept + slope * ghs writeRaster(gwr_pred, "path/gwr_pred.tif", overwrite = TRUE) How can I apply the GWR model parameters to a finer spatial scale, using the spgwr package? Here is the code, using the *spgwr *package: library(spgwr) library(sf) library(raster) library(parallel) ghs = raster("path/ghs.tif") # fine resolution raster regpoints <- as(ghs, "SpatialPoints") block.data = read.csv(file = "path/block.data.csv") #create mararate df for the x & y coords x = as.data.frame(block.data$x) y = as.data.frame(block.data$y) #convert the data to spatialPointsdf and then to spatialPixelsdf coordinates(block.data) = c("x", "y") # specify a model equation eq1 <- ntl ~ ghs # find optimal ADAPTIVE kernel bandwidth using cross validation abw <- gwr.sel(eq1, data = block.data, adapt = TRUE, gweight = gwr.Gauss) # fit a gwr based on adaptive bandwidth cl <- makeCluster(detectCores()) ab_gwr <- gwr(eq1, data = block.data, adapt = abw, gweight = gwr.Gauss, hatmatrix = TRUE, regpoints, predictions = TRUE, se.fit = TRUE, cl = cl) stopCluster(cl) #print the results of the model ab_gwr sp <- ab_gwr$SDF sf <- st_as_sf(sp) # intercept intercept = as.data.frame(sf$Intercept) intercept = SpatialPointsDataFrame(data = intercept, coords = regpoints) gridded(intercept) <- TRUE intercept <- raster(intercept) raster::crs(intercept) <- "EPSG:7767" intercept = resample(intercept, ghs, method = "bilinear") # slope slope = as.data.frame(sf$ghs) slope = SpatialPointsDataFrame(data = slope, coords = regpoints) gridded(slope) <- TRUE slope <- raster(slope) raster::crs(slope) <- "EPSG:7767" slope = resample(slope, ghs, method = "bilinear") gwr_pred = intercept + slope * ghs writeRaster(gwr_pred, "path/gwr_pred.tif", overwrite = TRUE) The fine resolution raster: ghs = raster(ncols=47, nrows=92, xmn=582216.388, xmx=603366.388, ymn=1005713.0202, ymx=1047113.0202, crs='+proj=lcc +lat_0=18.88015774 +lon_0=76.75 +lat_1=16.625 +lat_2=21.125 +x_0=1000000 +y_0=1000000 +datum=WGS84 +units=m +no_defs') The csv can be downloaded from here <https://drive.google.com/drive/folders/1V115zpdU2-5fXssI6iWv_F6aNu4E5qA7?usp=sharing> . -- Tziokas Nikolaos Cartographer Tel:(+44)07561120302 LinkedIn <http://linkedin.com/in/nikolaos-tziokas-896081130> [[alternative HTML version deleted]] _______________________________________________ R-sig-Geo mailing list R-sig-Geo@r-project.org https://stat.ethz.ch/mailman/listinfo/r-sig-geo