Hi Troels,

One more LaTeX tip here ;)  If you change:

+                     & - \frac{1}{T_{\textrm{rel}}}\ln{\left(
\frac{1+y}{2} + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2 \kAB p_D
)\right)} \\

to:

+                     & \qquad - \frac{1}{T_{\textrm{rel}}}\ln{\left(
\frac{1+y}{2} + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2 \kAB p_D
)\right)} \\

see how that looks for you.  Or there is the phantom trick I added to
http://wiki.nmr-relax.com/CR72 and http://wiki.nmr-relax.com/CR72_full
pages 
(http://wiki.nmr-relax.com/index.php?title=CR72&curid=300&diff=2403&oldid=2402
and 
http://wiki.nmr-relax.com/index.php?title=CR72_full&curid=317&diff=2404&oldid=2399).
 In this case:

+                     & \phantom{=} -
\frac{1}{T_{\textrm{rel}}}\ln{\left( \frac{1+y}{2} +
\frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2 \kAB p_D )\right)} \\

The formatting idea is that the multi-line maths should align to the
right of the equal sign.

Regards,

Edward



On 7 May 2014 10:14,  <tlin...@nmr-relax.com> wrote:
> Author: tlinnet
> Date: Wed May  7 10:14:09 2014
> New Revision: 23030
>
> URL: http://svn.gna.org/viewcvs/relax?rev=23030&view=rev
> Log:
> Used LaTeX subequations instead, and using  R2eff parameter is defined in the 
> relax.tex
>
> Using the defined \Rtwoeff, \RtwozeroA, \RtwozeroB, \kAB, \kBA, \kex.
>
> sr #3154: (https://gna.org/support/?3154) Implementation of Baldwin (2014) 
> B14 model - 2-site exact solution model for all time scales.
>
> This follows the tutorial for adding relaxation dispersion models at:
> http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_relax_manual
>
> Modified:
>     trunk/docs/latex/dispersion.tex
>
> Modified: trunk/docs/latex/dispersion.tex
> URL: 
> http://svn.gna.org/viewcvs/relax/trunk/docs/latex/dispersion.tex?rev=23030&r1=23029&r2=23030&view=diff
> ==============================================================================
> --- trunk/docs/latex/dispersion.tex     (original)
> +++ trunk/docs/latex/dispersion.tex     Wed May  7 10:14:09 2014
> @@ -565,21 +565,26 @@
>  This is the model for 2-site exchange exact analytical derivation on all 
> time scales (with the constraint that $\pA > \pB$), named after 
> \citet{Baldwin2014}.
>  It is selected by setting the model to `B14 full'.
>  The equation is
> -\begin{eqnarray}
> -  R_{2,\textrm{eff}} & = & 
> \frac{R_2^A+R_2^B+k_{\textrm{EX}}}{2}-\frac{N_{\textrm{CYC}}}{T_{\textrm{rel}}}\cosh{}^{-1}(v_{1c})
>  \nonumber \\
> -                     & - &  \frac{1}{T_{\textrm{rel}}}\ln{\left( 
> \frac{1+y}{2} + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2k_{\textrm{AB}}p_D 
> )\right)} \nonumber \\
> -    & = & R_{2,\textrm{eff}}^{\textrm{CR72}} - 
> \frac{1}{T_{\textrm{rel}}}\ln{\left( \frac{1+y}{2} + 
> \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2k_{\textrm{AB}}p_D )\right)} ,
> -\end{eqnarray}
> +\begin{subequations}
> +\begin{align}
> +  \Rtwoeff & = \frac{\RtwozeroA + \RtwozeroB + \kex }{2}-\frac{ 
> N_{\textrm{CYC}} }{ T_{\textrm{rel}} } \cosh{}^{-1}(v_{1c}) \\
> +                     & - \frac{1}{T_{\textrm{rel}}}\ln{\left( \frac{1+y}{2} 
> + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2 \kAB p_D )\right)} \\
> +    & = \Rtwoeff^{\textrm{CR72}} - \frac{1}{T_{\textrm{rel}}}\ln{\left( 
> \frac{1+y}{2} + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2\kAB p_D )\right)} ,
> +\end{align}
> +\end{subequations}
> +
>
>  where
> -\begin{eqnarray}
> -    v_{1c} & = & 
> F_0\cosh{\left(\tau_{\textrm{CP}}E_0\right)}-F_2\cosh{\left(\tau_{\textrm{CP}}E_2\right)}
>  \nonumber \\
> -    v_{1s} & = & 
> F_0\sinh{\left(\tau_{\textrm{CP}}E_0\right)}-F_2\sinh{\left(\tau_{\textrm{CP}}E_2\right)}
>  \nonumber \\
> -    v_{2}N & = & v_{1s}\left(O_B-O_A\right)+4O_B F_1^a 
> \sinh{\left(\tau_{\textrm{CP}}E_1\right)} \nonumber \\
> -    p_D N & = & v_{1s} + 
> \left(F_1^a+F_1^b\right)\sinh{\left(\tau_{\textrm{CP}}E_1\right)} \nonumber \\
> -    v_3 & = & \left( v_2^2 + 4 k_{\textrm{BA}} k_{\textrm{AB}} p_D^2 
> \right)^{1/2} \nonumber \\
> -    y & = & \left( \frac{v_{1c}-v_3}{v_{1c}+v_3} \right)^{N_{\textrm{CYC}}}
> -\end{eqnarray}
> +\begin{subequations}
> +\begin{align}
> +    v_{1c} & = 
> F_0\cosh{\left(\tau_{\textrm{CP}}E_0\right)}-F_2\cosh{\left(\tau_{\textrm{CP}}E_2\right)}
>  \\
> +    v_{1s} & = 
> F_0\sinh{\left(\tau_{\textrm{CP}}E_0\right)}-F_2\sinh{\left(\tau_{\textrm{CP}}E_2\right)}
>   \\
> +    v_{2}N & = v_{1s}\left(O_B-O_A\right)+4O_B F_1^a 
> \sinh{\left(\tau_{\textrm{CP}}E_1\right)} \nonumber \\
> +    p_D N & = v_{1s} + 
> \left(F_1^a+F_1^b\right)\sinh{\left(\tau_{\textrm{CP}}E_1\right)} \\
> +    v_3 & = \left( v_2^2 + 4 \kBA \kAB p_D^2 \right)^{1/2} \\
> +    y & = \left( \frac{v_{1c}-v_3}{v_{1c}+v_3} \right)^{N_{\textrm{CYC}}}
> +\end{align}
> +\end{subequations}
>
>  The advantage of this code will be that you will always get the right answer 
> provided you got 2-site exchange, in-phase magnetisation and on-resonance 
> pulses.
>
>
>
> _______________________________________________
> relax (http://www.nmr-relax.com)
>
> This is the relax-commits mailing list
> relax-comm...@gna.org
>
> To unsubscribe from this list, get a password
> reminder, or change your subscription options,
> visit the list information page at
> https://mail.gna.org/listinfo/relax-commits

_______________________________________________
relax (http://www.nmr-relax.com)

This is the relax-devel mailing list
relax-devel@gna.org

To unsubscribe from this list, get a password
reminder, or change your subscription options,
visit the list information page at
https://mail.gna.org/listinfo/relax-devel

Reply via email to