Hi Troels, One more LaTeX tip here ;) If you change:
+ & - \frac{1}{T_{\textrm{rel}}}\ln{\left( \frac{1+y}{2} + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2 \kAB p_D )\right)} \\ to: + & \qquad - \frac{1}{T_{\textrm{rel}}}\ln{\left( \frac{1+y}{2} + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2 \kAB p_D )\right)} \\ see how that looks for you. Or there is the phantom trick I added to http://wiki.nmr-relax.com/CR72 and http://wiki.nmr-relax.com/CR72_full pages (http://wiki.nmr-relax.com/index.php?title=CR72&curid=300&diff=2403&oldid=2402 and http://wiki.nmr-relax.com/index.php?title=CR72_full&curid=317&diff=2404&oldid=2399). In this case: + & \phantom{=} - \frac{1}{T_{\textrm{rel}}}\ln{\left( \frac{1+y}{2} + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2 \kAB p_D )\right)} \\ The formatting idea is that the multi-line maths should align to the right of the equal sign. Regards, Edward On 7 May 2014 10:14, <tlin...@nmr-relax.com> wrote: > Author: tlinnet > Date: Wed May 7 10:14:09 2014 > New Revision: 23030 > > URL: http://svn.gna.org/viewcvs/relax?rev=23030&view=rev > Log: > Used LaTeX subequations instead, and using R2eff parameter is defined in the > relax.tex > > Using the defined \Rtwoeff, \RtwozeroA, \RtwozeroB, \kAB, \kBA, \kex. > > sr #3154: (https://gna.org/support/?3154) Implementation of Baldwin (2014) > B14 model - 2-site exact solution model for all time scales. > > This follows the tutorial for adding relaxation dispersion models at: > http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_relax_manual > > Modified: > trunk/docs/latex/dispersion.tex > > Modified: trunk/docs/latex/dispersion.tex > URL: > http://svn.gna.org/viewcvs/relax/trunk/docs/latex/dispersion.tex?rev=23030&r1=23029&r2=23030&view=diff > ============================================================================== > --- trunk/docs/latex/dispersion.tex (original) > +++ trunk/docs/latex/dispersion.tex Wed May 7 10:14:09 2014 > @@ -565,21 +565,26 @@ > This is the model for 2-site exchange exact analytical derivation on all > time scales (with the constraint that $\pA > \pB$), named after > \citet{Baldwin2014}. > It is selected by setting the model to `B14 full'. > The equation is > -\begin{eqnarray} > - R_{2,\textrm{eff}} & = & > \frac{R_2^A+R_2^B+k_{\textrm{EX}}}{2}-\frac{N_{\textrm{CYC}}}{T_{\textrm{rel}}}\cosh{}^{-1}(v_{1c}) > \nonumber \\ > - & - & \frac{1}{T_{\textrm{rel}}}\ln{\left( > \frac{1+y}{2} + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2k_{\textrm{AB}}p_D > )\right)} \nonumber \\ > - & = & R_{2,\textrm{eff}}^{\textrm{CR72}} - > \frac{1}{T_{\textrm{rel}}}\ln{\left( \frac{1+y}{2} + > \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2k_{\textrm{AB}}p_D )\right)} , > -\end{eqnarray} > +\begin{subequations} > +\begin{align} > + \Rtwoeff & = \frac{\RtwozeroA + \RtwozeroB + \kex }{2}-\frac{ > N_{\textrm{CYC}} }{ T_{\textrm{rel}} } \cosh{}^{-1}(v_{1c}) \\ > + & - \frac{1}{T_{\textrm{rel}}}\ln{\left( \frac{1+y}{2} > + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2 \kAB p_D )\right)} \\ > + & = \Rtwoeff^{\textrm{CR72}} - \frac{1}{T_{\textrm{rel}}}\ln{\left( > \frac{1+y}{2} + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2\kAB p_D )\right)} , > +\end{align} > +\end{subequations} > + > > where > -\begin{eqnarray} > - v_{1c} & = & > F_0\cosh{\left(\tau_{\textrm{CP}}E_0\right)}-F_2\cosh{\left(\tau_{\textrm{CP}}E_2\right)} > \nonumber \\ > - v_{1s} & = & > F_0\sinh{\left(\tau_{\textrm{CP}}E_0\right)}-F_2\sinh{\left(\tau_{\textrm{CP}}E_2\right)} > \nonumber \\ > - v_{2}N & = & v_{1s}\left(O_B-O_A\right)+4O_B F_1^a > \sinh{\left(\tau_{\textrm{CP}}E_1\right)} \nonumber \\ > - p_D N & = & v_{1s} + > \left(F_1^a+F_1^b\right)\sinh{\left(\tau_{\textrm{CP}}E_1\right)} \nonumber \\ > - v_3 & = & \left( v_2^2 + 4 k_{\textrm{BA}} k_{\textrm{AB}} p_D^2 > \right)^{1/2} \nonumber \\ > - y & = & \left( \frac{v_{1c}-v_3}{v_{1c}+v_3} \right)^{N_{\textrm{CYC}}} > -\end{eqnarray} > +\begin{subequations} > +\begin{align} > + v_{1c} & = > F_0\cosh{\left(\tau_{\textrm{CP}}E_0\right)}-F_2\cosh{\left(\tau_{\textrm{CP}}E_2\right)} > \\ > + v_{1s} & = > F_0\sinh{\left(\tau_{\textrm{CP}}E_0\right)}-F_2\sinh{\left(\tau_{\textrm{CP}}E_2\right)} > \\ > + v_{2}N & = v_{1s}\left(O_B-O_A\right)+4O_B F_1^a > \sinh{\left(\tau_{\textrm{CP}}E_1\right)} \nonumber \\ > + p_D N & = v_{1s} + > \left(F_1^a+F_1^b\right)\sinh{\left(\tau_{\textrm{CP}}E_1\right)} \\ > + v_3 & = \left( v_2^2 + 4 \kBA \kAB p_D^2 \right)^{1/2} \\ > + y & = \left( \frac{v_{1c}-v_3}{v_{1c}+v_3} \right)^{N_{\textrm{CYC}}} > +\end{align} > +\end{subequations} > > The advantage of this code will be that you will always get the right answer > provided you got 2-site exchange, in-phase magnetisation and on-resonance > pulses. > > > > _______________________________________________ > relax (http://www.nmr-relax.com) > > This is the relax-commits mailing list > relax-comm...@gna.org > > To unsubscribe from this list, get a password > reminder, or change your subscription options, > visit the list information page at > https://mail.gna.org/listinfo/relax-commits _______________________________________________ relax (http://www.nmr-relax.com) This is the relax-devel mailing list relax-devel@gna.org To unsubscribe from this list, get a password reminder, or change your subscription options, visit the list information page at https://mail.gna.org/listinfo/relax-devel