There is also one "\nonumber" left that you may wish to remove in the second equation block. You may also need a "\nonumber" on the first R2eff line for the multi-line equation to work.
Cheers, Edward On 7 May 2014 10:27, Edward d'Auvergne <edw...@nmr-relax.com> wrote: > Hi Troels, > > One more LaTeX tip here ;) If you change: > > + & - \frac{1}{T_{\textrm{rel}}}\ln{\left( > \frac{1+y}{2} + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2 \kAB p_D > )\right)} \\ > > to: > > + & \qquad - \frac{1}{T_{\textrm{rel}}}\ln{\left( > \frac{1+y}{2} + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2 \kAB p_D > )\right)} \\ > > see how that looks for you. Or there is the phantom trick I added to > http://wiki.nmr-relax.com/CR72 and http://wiki.nmr-relax.com/CR72_full > pages > (http://wiki.nmr-relax.com/index.php?title=CR72&curid=300&diff=2403&oldid=2402 > and > http://wiki.nmr-relax.com/index.php?title=CR72_full&curid=317&diff=2404&oldid=2399). > In this case: > > + & \phantom{=} - > \frac{1}{T_{\textrm{rel}}}\ln{\left( \frac{1+y}{2} + > \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2 \kAB p_D )\right)} \\ > > The formatting idea is that the multi-line maths should align to the > right of the equal sign. > > Regards, > > Edward > > > > On 7 May 2014 10:14, <tlin...@nmr-relax.com> wrote: >> Author: tlinnet >> Date: Wed May 7 10:14:09 2014 >> New Revision: 23030 >> >> URL: http://svn.gna.org/viewcvs/relax?rev=23030&view=rev >> Log: >> Used LaTeX subequations instead, and using R2eff parameter is defined in >> the relax.tex >> >> Using the defined \Rtwoeff, \RtwozeroA, \RtwozeroB, \kAB, \kBA, \kex. >> >> sr #3154: (https://gna.org/support/?3154) Implementation of Baldwin (2014) >> B14 model - 2-site exact solution model for all time scales. >> >> This follows the tutorial for adding relaxation dispersion models at: >> http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_relax_manual >> >> Modified: >> trunk/docs/latex/dispersion.tex >> >> Modified: trunk/docs/latex/dispersion.tex >> URL: >> http://svn.gna.org/viewcvs/relax/trunk/docs/latex/dispersion.tex?rev=23030&r1=23029&r2=23030&view=diff >> ============================================================================== >> --- trunk/docs/latex/dispersion.tex (original) >> +++ trunk/docs/latex/dispersion.tex Wed May 7 10:14:09 2014 >> @@ -565,21 +565,26 @@ >> This is the model for 2-site exchange exact analytical derivation on all >> time scales (with the constraint that $\pA > \pB$), named after >> \citet{Baldwin2014}. >> It is selected by setting the model to `B14 full'. >> The equation is >> -\begin{eqnarray} >> - R_{2,\textrm{eff}} & = & >> \frac{R_2^A+R_2^B+k_{\textrm{EX}}}{2}-\frac{N_{\textrm{CYC}}}{T_{\textrm{rel}}}\cosh{}^{-1}(v_{1c}) >> \nonumber \\ >> - & - & \frac{1}{T_{\textrm{rel}}}\ln{\left( >> \frac{1+y}{2} + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2k_{\textrm{AB}}p_D >> )\right)} \nonumber \\ >> - & = & R_{2,\textrm{eff}}^{\textrm{CR72}} - >> \frac{1}{T_{\textrm{rel}}}\ln{\left( \frac{1+y}{2} + >> \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2k_{\textrm{AB}}p_D )\right)} , >> -\end{eqnarray} >> +\begin{subequations} >> +\begin{align} >> + \Rtwoeff & = \frac{\RtwozeroA + \RtwozeroB + \kex }{2}-\frac{ >> N_{\textrm{CYC}} }{ T_{\textrm{rel}} } \cosh{}^{-1}(v_{1c}) \\ >> + & - \frac{1}{T_{\textrm{rel}}}\ln{\left( \frac{1+y}{2} >> + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2 \kAB p_D )\right)} \\ >> + & = \Rtwoeff^{\textrm{CR72}} - \frac{1}{T_{\textrm{rel}}}\ln{\left( >> \frac{1+y}{2} + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2\kAB p_D )\right)} , >> +\end{align} >> +\end{subequations} >> + >> >> where >> -\begin{eqnarray} >> - v_{1c} & = & >> F_0\cosh{\left(\tau_{\textrm{CP}}E_0\right)}-F_2\cosh{\left(\tau_{\textrm{CP}}E_2\right)} >> \nonumber \\ >> - v_{1s} & = & >> F_0\sinh{\left(\tau_{\textrm{CP}}E_0\right)}-F_2\sinh{\left(\tau_{\textrm{CP}}E_2\right)} >> \nonumber \\ >> - v_{2}N & = & v_{1s}\left(O_B-O_A\right)+4O_B F_1^a >> \sinh{\left(\tau_{\textrm{CP}}E_1\right)} \nonumber \\ >> - p_D N & = & v_{1s} + >> \left(F_1^a+F_1^b\right)\sinh{\left(\tau_{\textrm{CP}}E_1\right)} \nonumber >> \\ >> - v_3 & = & \left( v_2^2 + 4 k_{\textrm{BA}} k_{\textrm{AB}} p_D^2 >> \right)^{1/2} \nonumber \\ >> - y & = & \left( \frac{v_{1c}-v_3}{v_{1c}+v_3} \right)^{N_{\textrm{CYC}}} >> -\end{eqnarray} >> +\begin{subequations} >> +\begin{align} >> + v_{1c} & = >> F_0\cosh{\left(\tau_{\textrm{CP}}E_0\right)}-F_2\cosh{\left(\tau_{\textrm{CP}}E_2\right)} >> \\ >> + v_{1s} & = >> F_0\sinh{\left(\tau_{\textrm{CP}}E_0\right)}-F_2\sinh{\left(\tau_{\textrm{CP}}E_2\right)} >> \\ >> + v_{2}N & = v_{1s}\left(O_B-O_A\right)+4O_B F_1^a >> \sinh{\left(\tau_{\textrm{CP}}E_1\right)} \nonumber \\ >> + p_D N & = v_{1s} + >> \left(F_1^a+F_1^b\right)\sinh{\left(\tau_{\textrm{CP}}E_1\right)} \\ >> + v_3 & = \left( v_2^2 + 4 \kBA \kAB p_D^2 \right)^{1/2} \\ >> + y & = \left( \frac{v_{1c}-v_3}{v_{1c}+v_3} \right)^{N_{\textrm{CYC}}} >> +\end{align} >> +\end{subequations} >> >> The advantage of this code will be that you will always get the right >> answer provided you got 2-site exchange, in-phase magnetisation and >> on-resonance pulses. >> >> >> >> _______________________________________________ >> relax (http://www.nmr-relax.com) >> >> This is the relax-commits mailing list >> relax-comm...@gna.org >> >> To unsubscribe from this list, get a password >> reminder, or change your subscription options, >> visit the list information page at >> https://mail.gna.org/listinfo/relax-commits _______________________________________________ relax (http://www.nmr-relax.com) This is the relax-devel mailing list relax-devel@gna.org To unsubscribe from this list, get a password reminder, or change your subscription options, visit the list information page at https://mail.gna.org/listinfo/relax-devel