There is also one "\nonumber" left that you may wish to remove in the
second equation block.  You may also need a "\nonumber" on the first
R2eff line for the multi-line equation to work.

Cheers,

Edward



On 7 May 2014 10:27, Edward d'Auvergne <edw...@nmr-relax.com> wrote:
> Hi Troels,
>
> One more LaTeX tip here ;)  If you change:
>
> +                     & - \frac{1}{T_{\textrm{rel}}}\ln{\left(
> \frac{1+y}{2} + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2 \kAB p_D
> )\right)} \\
>
> to:
>
> +                     & \qquad - \frac{1}{T_{\textrm{rel}}}\ln{\left(
> \frac{1+y}{2} + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2 \kAB p_D
> )\right)} \\
>
> see how that looks for you.  Or there is the phantom trick I added to
> http://wiki.nmr-relax.com/CR72 and http://wiki.nmr-relax.com/CR72_full
> pages 
> (http://wiki.nmr-relax.com/index.php?title=CR72&curid=300&diff=2403&oldid=2402
> and 
> http://wiki.nmr-relax.com/index.php?title=CR72_full&curid=317&diff=2404&oldid=2399).
>  In this case:
>
> +                     & \phantom{=} -
> \frac{1}{T_{\textrm{rel}}}\ln{\left( \frac{1+y}{2} +
> \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2 \kAB p_D )\right)} \\
>
> The formatting idea is that the multi-line maths should align to the
> right of the equal sign.
>
> Regards,
>
> Edward
>
>
>
> On 7 May 2014 10:14,  <tlin...@nmr-relax.com> wrote:
>> Author: tlinnet
>> Date: Wed May  7 10:14:09 2014
>> New Revision: 23030
>>
>> URL: http://svn.gna.org/viewcvs/relax?rev=23030&view=rev
>> Log:
>> Used LaTeX subequations instead, and using  R2eff parameter is defined in 
>> the relax.tex
>>
>> Using the defined \Rtwoeff, \RtwozeroA, \RtwozeroB, \kAB, \kBA, \kex.
>>
>> sr #3154: (https://gna.org/support/?3154) Implementation of Baldwin (2014) 
>> B14 model - 2-site exact solution model for all time scales.
>>
>> This follows the tutorial for adding relaxation dispersion models at:
>> http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_relax_manual
>>
>> Modified:
>>     trunk/docs/latex/dispersion.tex
>>
>> Modified: trunk/docs/latex/dispersion.tex
>> URL: 
>> http://svn.gna.org/viewcvs/relax/trunk/docs/latex/dispersion.tex?rev=23030&r1=23029&r2=23030&view=diff
>> ==============================================================================
>> --- trunk/docs/latex/dispersion.tex     (original)
>> +++ trunk/docs/latex/dispersion.tex     Wed May  7 10:14:09 2014
>> @@ -565,21 +565,26 @@
>>  This is the model for 2-site exchange exact analytical derivation on all 
>> time scales (with the constraint that $\pA > \pB$), named after 
>> \citet{Baldwin2014}.
>>  It is selected by setting the model to `B14 full'.
>>  The equation is
>> -\begin{eqnarray}
>> -  R_{2,\textrm{eff}} & = & 
>> \frac{R_2^A+R_2^B+k_{\textrm{EX}}}{2}-\frac{N_{\textrm{CYC}}}{T_{\textrm{rel}}}\cosh{}^{-1}(v_{1c})
>>  \nonumber \\
>> -                     & - &  \frac{1}{T_{\textrm{rel}}}\ln{\left( 
>> \frac{1+y}{2} + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2k_{\textrm{AB}}p_D 
>> )\right)} \nonumber \\
>> -    & = & R_{2,\textrm{eff}}^{\textrm{CR72}} - 
>> \frac{1}{T_{\textrm{rel}}}\ln{\left( \frac{1+y}{2} + 
>> \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2k_{\textrm{AB}}p_D )\right)} ,
>> -\end{eqnarray}
>> +\begin{subequations}
>> +\begin{align}
>> +  \Rtwoeff & = \frac{\RtwozeroA + \RtwozeroB + \kex }{2}-\frac{ 
>> N_{\textrm{CYC}} }{ T_{\textrm{rel}} } \cosh{}^{-1}(v_{1c}) \\
>> +                     & - \frac{1}{T_{\textrm{rel}}}\ln{\left( \frac{1+y}{2} 
>> + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2 \kAB p_D )\right)} \\
>> +    & = \Rtwoeff^{\textrm{CR72}} - \frac{1}{T_{\textrm{rel}}}\ln{\left( 
>> \frac{1+y}{2} + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2\kAB p_D )\right)} ,
>> +\end{align}
>> +\end{subequations}
>> +
>>
>>  where
>> -\begin{eqnarray}
>> -    v_{1c} & = & 
>> F_0\cosh{\left(\tau_{\textrm{CP}}E_0\right)}-F_2\cosh{\left(\tau_{\textrm{CP}}E_2\right)}
>>  \nonumber \\
>> -    v_{1s} & = & 
>> F_0\sinh{\left(\tau_{\textrm{CP}}E_0\right)}-F_2\sinh{\left(\tau_{\textrm{CP}}E_2\right)}
>>  \nonumber \\
>> -    v_{2}N & = & v_{1s}\left(O_B-O_A\right)+4O_B F_1^a 
>> \sinh{\left(\tau_{\textrm{CP}}E_1\right)} \nonumber \\
>> -    p_D N & = & v_{1s} + 
>> \left(F_1^a+F_1^b\right)\sinh{\left(\tau_{\textrm{CP}}E_1\right)} \nonumber 
>> \\
>> -    v_3 & = & \left( v_2^2 + 4 k_{\textrm{BA}} k_{\textrm{AB}} p_D^2 
>> \right)^{1/2} \nonumber \\
>> -    y & = & \left( \frac{v_{1c}-v_3}{v_{1c}+v_3} \right)^{N_{\textrm{CYC}}}
>> -\end{eqnarray}
>> +\begin{subequations}
>> +\begin{align}
>> +    v_{1c} & = 
>> F_0\cosh{\left(\tau_{\textrm{CP}}E_0\right)}-F_2\cosh{\left(\tau_{\textrm{CP}}E_2\right)}
>>  \\
>> +    v_{1s} & = 
>> F_0\sinh{\left(\tau_{\textrm{CP}}E_0\right)}-F_2\sinh{\left(\tau_{\textrm{CP}}E_2\right)}
>>   \\
>> +    v_{2}N & = v_{1s}\left(O_B-O_A\right)+4O_B F_1^a 
>> \sinh{\left(\tau_{\textrm{CP}}E_1\right)} \nonumber \\
>> +    p_D N & = v_{1s} + 
>> \left(F_1^a+F_1^b\right)\sinh{\left(\tau_{\textrm{CP}}E_1\right)} \\
>> +    v_3 & = \left( v_2^2 + 4 \kBA \kAB p_D^2 \right)^{1/2} \\
>> +    y & = \left( \frac{v_{1c}-v_3}{v_{1c}+v_3} \right)^{N_{\textrm{CYC}}}
>> +\end{align}
>> +\end{subequations}
>>
>>  The advantage of this code will be that you will always get the right 
>> answer provided you got 2-site exchange, in-phase magnetisation and 
>> on-resonance pulses.
>>
>>
>>
>> _______________________________________________
>> relax (http://www.nmr-relax.com)
>>
>> This is the relax-commits mailing list
>> relax-comm...@gna.org
>>
>> To unsubscribe from this list, get a password
>> reminder, or change your subscription options,
>> visit the list information page at
>> https://mail.gna.org/listinfo/relax-commits

_______________________________________________
relax (http://www.nmr-relax.com)

This is the relax-devel mailing list
relax-devel@gna.org

To unsubscribe from this list, get a password
reminder, or change your subscription options,
visit the list information page at
https://mail.gna.org/listinfo/relax-devel

Reply via email to