Hi,

This is probably still required for the numeric models, but it can be
removed from most analytic models.  As for disp_struct, as this goes
up to self.max_num_disp_points, it is not the same thing when
different numbers of dispersion points are used per experiment type,
field strength, or offset.  The self.num_disp_points structure is a
numpy array of ND, whereas self.disp_struct is one rank higher where
the ND have been converted into the new dimension.  Oh, once you have
everything converted, you'll also find a lot of old code in __init__()
to kill :)

Regards,

Edward

On 13 June 2014 10:18, Troels Emtekær Linnet <[email protected]> wrote:
> Hi ed.
>
> All the:
> num_points=self.num_disp_points_a
>
> can also be killed.
>
> They are not used.
> The disp_struct is actually this structure, in higher dimensions?
>
> Best
> Troels
>
>
> 2014-06-13 9:02 GMT+02:00 Edward d'Auvergne <[email protected]>:
>>
>> Hi Troels,
>>
>> Thanks to the lightning quick infrastructure you are putting into
>> place, we can also simplify the target_functions.relax_disp to
>> lib.dispersion API.  You will notice a lot of code like in this TP02
>> model:
>>
>> +        # Once off parameter conversions.
>> +        pB = 1.0 - pA
>>
>> This was originally in lib.dispersion (well at least for some of the
>> models), but I shifted it into the func_*() target functions to speed
>> the code up, as then the calculation would happen only once rather
>> than once for each iteration of that massive looping beast you have
>> killed.
>>
>> So now that the lib.dispersion functions are only called once per
>> target function call, all of these 'Once off parameter conversions'
>> can be shifted back into the lib.dispersion functions.  Then the
>> number of arguments for these functions will drop significantly, as
>> the {pB,  k_AB,  k_BA} parameters will no longer need to be passed in.
>> This will be far more significant for the 3-site models where there
>> are many, many parameter conversions.  This will have the added
>> benefit of simplifying the use of the lib.dispersion modules outside
>> of the dispersion target functions, for example with the unit testing.
>>
>> Cheers,
>>
>> Edward
>>
>>
>>
>>
>> On 13 June 2014 07:21,  <[email protected]> wrote:
>> > Author: tlinnet
>> > Date: Fri Jun 13 07:21:02 2014
>> > New Revision: 23901
>> >
>> > URL: http://svn.gna.org/viewcvs/relax?rev=23901&view=rev
>> > Log:
>> > Replaced the loop structure in target function of TAP03 with numpy
>> > arrays.
>> >
>> > This makes the model faster.
>> >
>> > Task #7807 (https://gna.org/task/index.php?7807): Speed-up of dispersion
>> > models for Clustered analysis.
>> >
>> > Modified:
>> >     branches/disp_spin_speed/target_functions/relax_disp.py
>> >
>> > Modified: branches/disp_spin_speed/target_functions/relax_disp.py
>> > URL:
>> > http://svn.gna.org/viewcvs/relax/branches/disp_spin_speed/target_functions/relax_disp.py?rev=23901&r1=23900&r2=23901&view=diff
>> >
>> > ==============================================================================
>> > --- branches/disp_spin_speed/target_functions/relax_disp.py
>> > (original)
>> > +++ branches/disp_spin_speed/target_functions/relax_disp.py     Fri Jun
>> > 13 07:21:02 2014
>> > @@ -395,7 +395,7 @@
>> >              self.func = self.func_ns_mmq_3site_linear
>> >
>> >          # Setup special numpy array structures, for higher dimensional
>> > computation.
>> > -        if model in [MODEL_B14, MODEL_B14_FULL, MODEL_CR72,
>> > MODEL_CR72_FULL, MODEL_DPL94, MODEL_TSMFK01]:
>> > +        if model in [MODEL_B14, MODEL_B14_FULL, MODEL_CR72,
>> > MODEL_CR72_FULL, MODEL_DPL94, MODEL_TAP03, MODEL_TSMFK01]:
>> >              # Get the shape of back_calc structure.
>> >              # If using just one field, or having the same number of
>> > dispersion points, the shape would extend to that number.
>> >              # Shape has to be: [ei][si][mi][oi].
>> > @@ -435,10 +435,12 @@
>> >              self.power_a = ones(self.numpy_array_shape, int16)
>> >
>> >              # For R1rho data.
>> > -            if model in [MODEL_DPL94]:
>> > +            if model in [MODEL_DPL94, MODEL_TAP03]:
>> >                  self.tilt_angles_a = deepcopy(zeros_a)
>> >                  self.spin_lock_omega1_squared_a = deepcopy(zeros_a)
>> > +                self.spin_lock_omega1_a = deepcopy(zeros_a)
>> >                  self.phi_ex_struct = deepcopy(zeros_a)
>> > +                self.offset_a = deepcopy(zeros_a)
>> >
>> >              self.frqs_a = deepcopy(zeros_a)
>> >              self.disp_struct = deepcopy(zeros_a)
>> > @@ -447,6 +449,7 @@
>> >              # Create special numpy structures.
>> >              # Structure of dw. The full and the outer dimensions
>> > structures.
>> >              self.dw_struct = deepcopy(zeros_a)
>> > +            self.no_nd_struct = ones([self.NO, self.ND], float64)
>> >              self.nm_no_nd_struct = ones([self.NM, self.NO, self.ND],
>> > float64)
>> >
>> >              # Structure of r20a and r20b. The full and outer dimensions
>> > structures.
>> > @@ -459,10 +462,11 @@
>> >                  # Expand relax times.
>> >                  self.inv_relax_times_a = 1.0 / multiply.outer(
>> > tile(self.relax_times[:,None],(1, 1, self.NS)).reshape(self.NE, self.NS,
>> > self.NM), self.no_nd_struct )
>> >
>> > -            if model in [MODEL_DPL94]:
>> > +            if model in [MODEL_DPL94, MODEL_TAP03]:
>> >                  self.r1_a = multiply.outer( self.r1.reshape(self.NE,
>> > self.NS, self.NM), self.no_nd_struct )
>> > -
>> > -            # Extract the frequencies to numpy array.
>> > +                self.chemical_shifts_a = multiply.outer(
>> > self.chemical_shifts, self.no_nd_struct )
>> > +
>> > +           # Extract the frequencies to numpy array.
>> >              self.frqs_a = multiply.outer(
>> > asarray(self.frqs).reshape(self.NE, self.NS, self.NM), self.no_nd_struct )
>> >
>> >              # Loop over the experiment types.
>> > @@ -476,7 +480,7 @@
>> >                              # Extract number of dispersion points.
>> >                              num_disp_points =
>> > self.num_disp_points[ei][si][mi][oi]
>> >
>> > -                            if model not in [MODEL_DPL94]:
>> > +                            if model not in [MODEL_DPL94, MODEL_TAP03]:
>> >                                  # Extract cpmg_frqs and num_disp_points
>> > from lists.
>> >
>> > self.cpmg_frqs_a[ei][si][mi][oi][:num_disp_points] =
>> > self.cpmg_frqs[ei][mi][oi]
>> >
>> > self.num_disp_points_a[ei][si][mi][oi][:num_disp_points] =
>> > self.num_disp_points[ei][si][mi][oi]
>> > @@ -498,12 +502,14 @@
>> >                                      self.power_a[ei][si][mi][oi][di] =
>> > int(round(self.cpmg_frqs[ei][mi][0][di] * self.relax_times[ei][mi]))
>> >                                      self.tau_cpmg_a[ei][si][mi][oi][di]
>> > = 0.25 / self.cpmg_frqs[ei][mi][0][di]
>> >                                  # For R1rho data.
>> > -                                if model in [MODEL_DPL94]:
>> > +                                if model in [MODEL_DPL94, MODEL_TAP03]:
>> >
>> > self.disp_struct[ei][si][mi][oi][di] = 1.0
>> >
>> >                                      # Extract the frequencies to numpy
>> > array.
>> >
>> > self.tilt_angles_a[ei][si][mi][oi][di] =
>> > self.tilt_angles[ei][si][mi][oi][di]
>> >
>> > self.spin_lock_omega1_squared_a[ei][si][mi][oi][di] =
>> > self.spin_lock_omega1_squared[ei][mi][oi][di]
>> > +
>> > self.spin_lock_omega1_a[ei][si][mi][oi][di] =
>> > self.spin_lock_omega1[ei][mi][oi][di]
>> > +                                    self.offset_a[ei][si][mi][oi] =
>> > self.offset[ei][si][mi][oi]
>> >
>> >                                      if spin_lock_nu1 != None and
>> > len(spin_lock_nu1[ei][mi][oi]):
>> >
>> > self.num_disp_points_a[ei][si][mi][oi][di] = num_disp_points
>> > @@ -1908,6 +1914,49 @@
>> >          # Once off parameter conversions.
>> >          pB = 1.0 - pA
>> >
>> > +        # Convert dw from ppm to rad/s. Use the out argument, to pass
>> > directly to structure.
>> > +        multiply( multiply.outer( dw.reshape(self.NE, self.NS),
>> > self.nm_no_nd_struct ), self.frqs_struct, out=self.dw_struct )
>> > +
>> > +        # Reshape R20 to per experiment, spin and frequency.
>> > +        self.r20_struct[:] = multiply.outer( R20.reshape(self.NE,
>> > self.NS, self.NM), self.no_nd_struct )
>> > +
>> > +        # Back calculate the R1rho values.
>> > +        r1rho_TAP03(r1rho_prime=self.r20_struct,
>> > omega=self.chemical_shifts_a, offset=self.offset_a, pA=pA, pB=pB,
>> > dw=self.dw_struct, kex=kex, R1=self.r1_a,
>> > spin_lock_fields=self.spin_lock_omega1_a,
>> > spin_lock_fields2=self.spin_lock_omega1_squared_a,
>> > back_calc=self.back_calc_a, num_points=self.num_disp_points_a)
>> > +
>> > +        # Clean the data for all values, which is left over at the end
>> > of arrays.
>> > +        self.back_calc_a = self.back_calc_a*self.disp_struct
>> > +
>> > +        ## For all missing data points, set the back-calculated value
>> > to the measured values so that it has no effect on the chi-squared value.
>> > +        if self.has_missing:
>> > +            # Replace with values.
>> > +            self.back_calc_a[self.mask_replace_blank.mask] =
>> > self.values_a[self.mask_replace_blank.mask]
>> > +
>> > +        # Return the total chi-squared value.
>> > +        return chi2_rankN(self.values_a, self.back_calc_a,
>> > self.errors_a)
>> > +
>> > +
>> > +    def func_TP02(self, params):
>> > +        """Target function for the Trott and Palmer (2002) R1rho
>> > off-resonance 2-site model.
>> > +
>> > +        @param params:  The vector of parameter values.
>> > +        @type params:   numpy rank-1 float array
>> > +        @return:        The chi-squared value.
>> > +        @rtype:         float
>> > +        """
>> > +
>> > +        # Scaling.
>> > +        if self.scaling_flag:
>> > +            params = dot(params, self.scaling_matrix)
>> > +
>> > +        # Unpack the parameter values.
>> > +        R20 = params[:self.end_index[0]]
>> > +        dw = params[self.end_index[0]:self.end_index[1]]
>> > +        pA = params[self.end_index[1]]
>> > +        kex = params[self.end_index[1]+1]
>> > +
>> > +        # Once off parameter conversions.
>> > +        pB = 1.0 - pA
>> > +
>> >          # Initialise.
>> >          chi2_sum = 0.0
>> >
>> > @@ -1924,7 +1973,7 @@
>> >                  # Loop over the offsets.
>> >                  for oi in range(self.num_offsets[0][si][mi]):
>> >                      # Back calculate the R1rho values.
>> > -                    r1rho_TAP03(r1rho_prime=R20[r20_index],
>> > omega=self.chemical_shifts[0][si][mi], offset=self.offset[0][si][mi][oi],
>> > pA=pA, pB=pB, dw=dw_frq, kex=kex, R1=self.r1[si, mi],
>> > spin_lock_fields=self.spin_lock_omega1[0][mi][oi],
>> > spin_lock_fields2=self.spin_lock_omega1_squared[0][mi][oi],
>> > back_calc=self.back_calc[0][si][mi][oi],
>> > num_points=self.num_disp_points[0][si][mi][oi])
>> > +                    r1rho_TP02(r1rho_prime=R20[r20_index],
>> > omega=self.chemical_shifts[0][si][mi], offset=self.offset[0][si][mi][oi],
>> > pA=pA, pB=pB, dw=dw_frq, kex=kex, R1=self.r1[si, mi],
>> > spin_lock_fields=self.spin_lock_omega1[0][mi][oi],
>> > spin_lock_fields2=self.spin_lock_omega1_squared[0][mi][oi],
>> > back_calc=self.back_calc[0][si][mi][oi],
>> > num_points=self.num_disp_points[0][si][mi][oi])
>> >
>> >                      # For all missing data points, set the
>> > back-calculated value to the measured values so that it has no effect on 
>> > the
>> > chi-squared value.
>> >                      for di in
>> > range(self.num_disp_points[0][si][mi][oi]):
>> > @@ -1938,58 +1987,6 @@
>> >          return chi2_sum
>> >
>> >
>> > -    def func_TP02(self, params):
>> > -        """Target function for the Trott and Palmer (2002) R1rho
>> > off-resonance 2-site model.
>> > -
>> > -        @param params:  The vector of parameter values.
>> > -        @type params:   numpy rank-1 float array
>> > -        @return:        The chi-squared value.
>> > -        @rtype:         float
>> > -        """
>> > -
>> > -        # Scaling.
>> > -        if self.scaling_flag:
>> > -            params = dot(params, self.scaling_matrix)
>> > -
>> > -        # Unpack the parameter values.
>> > -        R20 = params[:self.end_index[0]]
>> > -        dw = params[self.end_index[0]:self.end_index[1]]
>> > -        pA = params[self.end_index[1]]
>> > -        kex = params[self.end_index[1]+1]
>> > -
>> > -        # Once off parameter conversions.
>> > -        pB = 1.0 - pA
>> > -
>> > -        # Initialise.
>> > -        chi2_sum = 0.0
>> > -
>> > -        # Loop over the spins.
>> > -        for si in range(self.num_spins):
>> > -            # Loop over the spectrometer frequencies.
>> > -            for mi in range(self.num_frq):
>> > -                # The R20 index.
>> > -                r20_index = mi + si*self.num_frq
>> > -
>> > -                # Convert dw from ppm to rad/s.
>> > -                dw_frq = dw[si] * self.frqs[0][si][mi]
>> > -
>> > -                # Loop over the offsets.
>> > -                for oi in range(self.num_offsets[0][si][mi]):
>> > -                    # Back calculate the R1rho values.
>> > -                    r1rho_TP02(r1rho_prime=R20[r20_index],
>> > omega=self.chemical_shifts[0][si][mi], offset=self.offset[0][si][mi][oi],
>> > pA=pA, pB=pB, dw=dw_frq, kex=kex, R1=self.r1[si, mi],
>> > spin_lock_fields=self.spin_lock_omega1[0][mi][oi],
>> > spin_lock_fields2=self.spin_lock_omega1_squared[0][mi][oi],
>> > back_calc=self.back_calc[0][si][mi][oi],
>> > num_points=self.num_disp_points[0][si][mi][oi])
>> > -
>> > -                    # For all missing data points, set the
>> > back-calculated value to the measured values so that it has no effect on 
>> > the
>> > chi-squared value.
>> > -                    for di in
>> > range(self.num_disp_points[0][si][mi][oi]):
>> > -                        if self.missing[0][si][mi][oi][di]:
>> > -                            self.back_calc[0][si][mi][oi][di] =
>> > self.values[0][si][mi][oi][di]
>> > -
>> > -                    # Calculate and return the chi-squared value.
>> > -                    chi2_sum += chi2(self.values[0][si][mi][oi],
>> > self.back_calc[0][si][mi][oi], self.errors[0][si][mi][oi])
>> > -
>> > -        # Return the total chi-squared value.
>> > -        return chi2_sum
>> > -
>> > -
>> >      def func_TSMFK01(self, params):
>> >          """Target function for the the Tollinger et al. (2001) 2-site
>> > very-slow exchange model, range of microsecond to second time scale.
>> >
>> >
>> >
>> > _______________________________________________
>> > relax (http://www.nmr-relax.com)
>> >
>> > This is the relax-commits mailing list
>> > [email protected]
>> >
>> > To unsubscribe from this list, get a password
>> > reminder, or change your subscription options,
>> > visit the list information page at
>> > https://mail.gna.org/listinfo/relax-commits
>>
>> _______________________________________________
>> relax (http://www.nmr-relax.com)
>>
>> This is the relax-devel mailing list
>> [email protected]
>>
>>
>> To unsubscribe from this list, get a password
>> reminder, or change your subscription options,
>> visit the list information page at
>> https://mail.gna.org/listinfo/relax-devel
>
>

_______________________________________________
relax (http://www.nmr-relax.com)

This is the relax-devel mailing list
[email protected]

To unsubscribe from this list, get a password
reminder, or change your subscription options,
visit the list information page at
https://mail.gna.org/listinfo/relax-devel

Reply via email to