Hi Ed.

Well, the disp_struct is filled out with zeros, where there are no disp
point
per experiment type, field strength, or offset.

So it "should" be the same.

That is why, I have to go "all the way" to looping over disp points in the
init function.
For cpmg, I can stop one loop before, and fill 1.0 up to [:disp_points]

I had to fight a little, to realise this.

Best
Troels


2014-06-13 10:36 GMT+02:00 Edward d'Auvergne <[email protected]>:

> Hi,
>
> This is probably still required for the numeric models, but it can be
> removed from most analytic models.  As for disp_struct, as this goes
> up to self.max_num_disp_points, it is not the same thing when
> different numbers of dispersion points are used per experiment type,
> field strength, or offset.  The self.num_disp_points structure is a
> numpy array of ND, whereas self.disp_struct is one rank higher where
> the ND have been converted into the new dimension.  Oh, once you have
> everything converted, you'll also find a lot of old code in __init__()
> to kill :)
>
> Regards,
>
> Edward
>
> On 13 June 2014 10:18, Troels Emtekær Linnet <[email protected]>
> wrote:
> > Hi ed.
> >
> > All the:
> > num_points=self.num_disp_points_a
> >
> > can also be killed.
> >
> > They are not used.
> > The disp_struct is actually this structure, in higher dimensions?
> >
> > Best
> > Troels
> >
> >
> > 2014-06-13 9:02 GMT+02:00 Edward d'Auvergne <[email protected]>:
> >>
> >> Hi Troels,
> >>
> >> Thanks to the lightning quick infrastructure you are putting into
> >> place, we can also simplify the target_functions.relax_disp to
> >> lib.dispersion API.  You will notice a lot of code like in this TP02
> >> model:
> >>
> >> +        # Once off parameter conversions.
> >> +        pB = 1.0 - pA
> >>
> >> This was originally in lib.dispersion (well at least for some of the
> >> models), but I shifted it into the func_*() target functions to speed
> >> the code up, as then the calculation would happen only once rather
> >> than once for each iteration of that massive looping beast you have
> >> killed.
> >>
> >> So now that the lib.dispersion functions are only called once per
> >> target function call, all of these 'Once off parameter conversions'
> >> can be shifted back into the lib.dispersion functions.  Then the
> >> number of arguments for these functions will drop significantly, as
> >> the {pB,  k_AB,  k_BA} parameters will no longer need to be passed in.
> >> This will be far more significant for the 3-site models where there
> >> are many, many parameter conversions.  This will have the added
> >> benefit of simplifying the use of the lib.dispersion modules outside
> >> of the dispersion target functions, for example with the unit testing.
> >>
> >> Cheers,
> >>
> >> Edward
> >>
> >>
> >>
> >>
> >> On 13 June 2014 07:21,  <[email protected]> wrote:
> >> > Author: tlinnet
> >> > Date: Fri Jun 13 07:21:02 2014
> >> > New Revision: 23901
> >> >
> >> > URL: http://svn.gna.org/viewcvs/relax?rev=23901&view=rev
> >> > Log:
> >> > Replaced the loop structure in target function of TAP03 with numpy
> >> > arrays.
> >> >
> >> > This makes the model faster.
> >> >
> >> > Task #7807 (https://gna.org/task/index.php?7807): Speed-up of
> dispersion
> >> > models for Clustered analysis.
> >> >
> >> > Modified:
> >> >     branches/disp_spin_speed/target_functions/relax_disp.py
> >> >
> >> > Modified: branches/disp_spin_speed/target_functions/relax_disp.py
> >> > URL:
> >> >
> http://svn.gna.org/viewcvs/relax/branches/disp_spin_speed/target_functions/relax_disp.py?rev=23901&r1=23900&r2=23901&view=diff
> >> >
> >> >
> ==============================================================================
> >> > --- branches/disp_spin_speed/target_functions/relax_disp.py
> >> > (original)
> >> > +++ branches/disp_spin_speed/target_functions/relax_disp.py     Fri
> Jun
> >> > 13 07:21:02 2014
> >> > @@ -395,7 +395,7 @@
> >> >              self.func = self.func_ns_mmq_3site_linear
> >> >
> >> >          # Setup special numpy array structures, for higher
> dimensional
> >> > computation.
> >> > -        if model in [MODEL_B14, MODEL_B14_FULL, MODEL_CR72,
> >> > MODEL_CR72_FULL, MODEL_DPL94, MODEL_TSMFK01]:
> >> > +        if model in [MODEL_B14, MODEL_B14_FULL, MODEL_CR72,
> >> > MODEL_CR72_FULL, MODEL_DPL94, MODEL_TAP03, MODEL_TSMFK01]:
> >> >              # Get the shape of back_calc structure.
> >> >              # If using just one field, or having the same number of
> >> > dispersion points, the shape would extend to that number.
> >> >              # Shape has to be: [ei][si][mi][oi].
> >> > @@ -435,10 +435,12 @@
> >> >              self.power_a = ones(self.numpy_array_shape, int16)
> >> >
> >> >              # For R1rho data.
> >> > -            if model in [MODEL_DPL94]:
> >> > +            if model in [MODEL_DPL94, MODEL_TAP03]:
> >> >                  self.tilt_angles_a = deepcopy(zeros_a)
> >> >                  self.spin_lock_omega1_squared_a = deepcopy(zeros_a)
> >> > +                self.spin_lock_omega1_a = deepcopy(zeros_a)
> >> >                  self.phi_ex_struct = deepcopy(zeros_a)
> >> > +                self.offset_a = deepcopy(zeros_a)
> >> >
> >> >              self.frqs_a = deepcopy(zeros_a)
> >> >              self.disp_struct = deepcopy(zeros_a)
> >> > @@ -447,6 +449,7 @@
> >> >              # Create special numpy structures.
> >> >              # Structure of dw. The full and the outer dimensions
> >> > structures.
> >> >              self.dw_struct = deepcopy(zeros_a)
> >> > +            self.no_nd_struct = ones([self.NO, self.ND], float64)
> >> >              self.nm_no_nd_struct = ones([self.NM, self.NO, self.ND],
> >> > float64)
> >> >
> >> >              # Structure of r20a and r20b. The full and outer
> dimensions
> >> > structures.
> >> > @@ -459,10 +462,11 @@
> >> >                  # Expand relax times.
> >> >                  self.inv_relax_times_a = 1.0 / multiply.outer(
> >> > tile(self.relax_times[:,None],(1, 1, self.NS)).reshape(self.NE,
> self.NS,
> >> > self.NM), self.no_nd_struct )
> >> >
> >> > -            if model in [MODEL_DPL94]:
> >> > +            if model in [MODEL_DPL94, MODEL_TAP03]:
> >> >                  self.r1_a = multiply.outer( self.r1.reshape(self.NE,
> >> > self.NS, self.NM), self.no_nd_struct )
> >> > -
> >> > -            # Extract the frequencies to numpy array.
> >> > +                self.chemical_shifts_a = multiply.outer(
> >> > self.chemical_shifts, self.no_nd_struct )
> >> > +
> >> > +           # Extract the frequencies to numpy array.
> >> >              self.frqs_a = multiply.outer(
> >> > asarray(self.frqs).reshape(self.NE, self.NS, self.NM),
> self.no_nd_struct )
> >> >
> >> >              # Loop over the experiment types.
> >> > @@ -476,7 +480,7 @@
> >> >                              # Extract number of dispersion points.
> >> >                              num_disp_points =
> >> > self.num_disp_points[ei][si][mi][oi]
> >> >
> >> > -                            if model not in [MODEL_DPL94]:
> >> > +                            if model not in [MODEL_DPL94,
> MODEL_TAP03]:
> >> >                                  # Extract cpmg_frqs and
> num_disp_points
> >> > from lists.
> >> >
> >> > self.cpmg_frqs_a[ei][si][mi][oi][:num_disp_points] =
> >> > self.cpmg_frqs[ei][mi][oi]
> >> >
> >> > self.num_disp_points_a[ei][si][mi][oi][:num_disp_points] =
> >> > self.num_disp_points[ei][si][mi][oi]
> >> > @@ -498,12 +502,14 @@
> >> >                                      self.power_a[ei][si][mi][oi][di]
> =
> >> > int(round(self.cpmg_frqs[ei][mi][0][di] * self.relax_times[ei][mi]))
> >> >
>  self.tau_cpmg_a[ei][si][mi][oi][di]
> >> > = 0.25 / self.cpmg_frqs[ei][mi][0][di]
> >> >                                  # For R1rho data.
> >> > -                                if model in [MODEL_DPL94]:
> >> > +                                if model in [MODEL_DPL94,
> MODEL_TAP03]:
> >> >
> >> > self.disp_struct[ei][si][mi][oi][di] = 1.0
> >> >
> >> >                                      # Extract the frequencies to
> numpy
> >> > array.
> >> >
> >> > self.tilt_angles_a[ei][si][mi][oi][di] =
> >> > self.tilt_angles[ei][si][mi][oi][di]
> >> >
> >> > self.spin_lock_omega1_squared_a[ei][si][mi][oi][di] =
> >> > self.spin_lock_omega1_squared[ei][mi][oi][di]
> >> > +
> >> > self.spin_lock_omega1_a[ei][si][mi][oi][di] =
> >> > self.spin_lock_omega1[ei][mi][oi][di]
> >> > +                                    self.offset_a[ei][si][mi][oi] =
> >> > self.offset[ei][si][mi][oi]
> >> >
> >> >                                      if spin_lock_nu1 != None and
> >> > len(spin_lock_nu1[ei][mi][oi]):
> >> >
> >> > self.num_disp_points_a[ei][si][mi][oi][di] = num_disp_points
> >> > @@ -1908,6 +1914,49 @@
> >> >          # Once off parameter conversions.
> >> >          pB = 1.0 - pA
> >> >
> >> > +        # Convert dw from ppm to rad/s. Use the out argument, to pass
> >> > directly to structure.
> >> > +        multiply( multiply.outer( dw.reshape(self.NE, self.NS),
> >> > self.nm_no_nd_struct ), self.frqs_struct, out=self.dw_struct )
> >> > +
> >> > +        # Reshape R20 to per experiment, spin and frequency.
> >> > +        self.r20_struct[:] = multiply.outer( R20.reshape(self.NE,
> >> > self.NS, self.NM), self.no_nd_struct )
> >> > +
> >> > +        # Back calculate the R1rho values.
> >> > +        r1rho_TAP03(r1rho_prime=self.r20_struct,
> >> > omega=self.chemical_shifts_a, offset=self.offset_a, pA=pA, pB=pB,
> >> > dw=self.dw_struct, kex=kex, R1=self.r1_a,
> >> > spin_lock_fields=self.spin_lock_omega1_a,
> >> > spin_lock_fields2=self.spin_lock_omega1_squared_a,
> >> > back_calc=self.back_calc_a, num_points=self.num_disp_points_a)
> >> > +
> >> > +        # Clean the data for all values, which is left over at the
> end
> >> > of arrays.
> >> > +        self.back_calc_a = self.back_calc_a*self.disp_struct
> >> > +
> >> > +        ## For all missing data points, set the back-calculated value
> >> > to the measured values so that it has no effect on the chi-squared
> value.
> >> > +        if self.has_missing:
> >> > +            # Replace with values.
> >> > +            self.back_calc_a[self.mask_replace_blank.mask] =
> >> > self.values_a[self.mask_replace_blank.mask]
> >> > +
> >> > +        # Return the total chi-squared value.
> >> > +        return chi2_rankN(self.values_a, self.back_calc_a,
> >> > self.errors_a)
> >> > +
> >> > +
> >> > +    def func_TP02(self, params):
> >> > +        """Target function for the Trott and Palmer (2002) R1rho
> >> > off-resonance 2-site model.
> >> > +
> >> > +        @param params:  The vector of parameter values.
> >> > +        @type params:   numpy rank-1 float array
> >> > +        @return:        The chi-squared value.
> >> > +        @rtype:         float
> >> > +        """
> >> > +
> >> > +        # Scaling.
> >> > +        if self.scaling_flag:
> >> > +            params = dot(params, self.scaling_matrix)
> >> > +
> >> > +        # Unpack the parameter values.
> >> > +        R20 = params[:self.end_index[0]]
> >> > +        dw = params[self.end_index[0]:self.end_index[1]]
> >> > +        pA = params[self.end_index[1]]
> >> > +        kex = params[self.end_index[1]+1]
> >> > +
> >> > +        # Once off parameter conversions.
> >> > +        pB = 1.0 - pA
> >> > +
> >> >          # Initialise.
> >> >          chi2_sum = 0.0
> >> >
> >> > @@ -1924,7 +1973,7 @@
> >> >                  # Loop over the offsets.
> >> >                  for oi in range(self.num_offsets[0][si][mi]):
> >> >                      # Back calculate the R1rho values.
> >> > -                    r1rho_TAP03(r1rho_prime=R20[r20_index],
> >> > omega=self.chemical_shifts[0][si][mi],
> offset=self.offset[0][si][mi][oi],
> >> > pA=pA, pB=pB, dw=dw_frq, kex=kex, R1=self.r1[si, mi],
> >> > spin_lock_fields=self.spin_lock_omega1[0][mi][oi],
> >> > spin_lock_fields2=self.spin_lock_omega1_squared[0][mi][oi],
> >> > back_calc=self.back_calc[0][si][mi][oi],
> >> > num_points=self.num_disp_points[0][si][mi][oi])
> >> > +                    r1rho_TP02(r1rho_prime=R20[r20_index],
> >> > omega=self.chemical_shifts[0][si][mi],
> offset=self.offset[0][si][mi][oi],
> >> > pA=pA, pB=pB, dw=dw_frq, kex=kex, R1=self.r1[si, mi],
> >> > spin_lock_fields=self.spin_lock_omega1[0][mi][oi],
> >> > spin_lock_fields2=self.spin_lock_omega1_squared[0][mi][oi],
> >> > back_calc=self.back_calc[0][si][mi][oi],
> >> > num_points=self.num_disp_points[0][si][mi][oi])
> >> >
> >> >                      # For all missing data points, set the
> >> > back-calculated value to the measured values so that it has no effect
> on the
> >> > chi-squared value.
> >> >                      for di in
> >> > range(self.num_disp_points[0][si][mi][oi]):
> >> > @@ -1938,58 +1987,6 @@
> >> >          return chi2_sum
> >> >
> >> >
> >> > -    def func_TP02(self, params):
> >> > -        """Target function for the Trott and Palmer (2002) R1rho
> >> > off-resonance 2-site model.
> >> > -
> >> > -        @param params:  The vector of parameter values.
> >> > -        @type params:   numpy rank-1 float array
> >> > -        @return:        The chi-squared value.
> >> > -        @rtype:         float
> >> > -        """
> >> > -
> >> > -        # Scaling.
> >> > -        if self.scaling_flag:
> >> > -            params = dot(params, self.scaling_matrix)
> >> > -
> >> > -        # Unpack the parameter values.
> >> > -        R20 = params[:self.end_index[0]]
> >> > -        dw = params[self.end_index[0]:self.end_index[1]]
> >> > -        pA = params[self.end_index[1]]
> >> > -        kex = params[self.end_index[1]+1]
> >> > -
> >> > -        # Once off parameter conversions.
> >> > -        pB = 1.0 - pA
> >> > -
> >> > -        # Initialise.
> >> > -        chi2_sum = 0.0
> >> > -
> >> > -        # Loop over the spins.
> >> > -        for si in range(self.num_spins):
> >> > -            # Loop over the spectrometer frequencies.
> >> > -            for mi in range(self.num_frq):
> >> > -                # The R20 index.
> >> > -                r20_index = mi + si*self.num_frq
> >> > -
> >> > -                # Convert dw from ppm to rad/s.
> >> > -                dw_frq = dw[si] * self.frqs[0][si][mi]
> >> > -
> >> > -                # Loop over the offsets.
> >> > -                for oi in range(self.num_offsets[0][si][mi]):
> >> > -                    # Back calculate the R1rho values.
> >> > -                    r1rho_TP02(r1rho_prime=R20[r20_index],
> >> > omega=self.chemical_shifts[0][si][mi],
> offset=self.offset[0][si][mi][oi],
> >> > pA=pA, pB=pB, dw=dw_frq, kex=kex, R1=self.r1[si, mi],
> >> > spin_lock_fields=self.spin_lock_omega1[0][mi][oi],
> >> > spin_lock_fields2=self.spin_lock_omega1_squared[0][mi][oi],
> >> > back_calc=self.back_calc[0][si][mi][oi],
> >> > num_points=self.num_disp_points[0][si][mi][oi])
> >> > -
> >> > -                    # For all missing data points, set the
> >> > back-calculated value to the measured values so that it has no effect
> on the
> >> > chi-squared value.
> >> > -                    for di in
> >> > range(self.num_disp_points[0][si][mi][oi]):
> >> > -                        if self.missing[0][si][mi][oi][di]:
> >> > -                            self.back_calc[0][si][mi][oi][di] =
> >> > self.values[0][si][mi][oi][di]
> >> > -
> >> > -                    # Calculate and return the chi-squared value.
> >> > -                    chi2_sum += chi2(self.values[0][si][mi][oi],
> >> > self.back_calc[0][si][mi][oi], self.errors[0][si][mi][oi])
> >> > -
> >> > -        # Return the total chi-squared value.
> >> > -        return chi2_sum
> >> > -
> >> > -
> >> >      def func_TSMFK01(self, params):
> >> >          """Target function for the the Tollinger et al. (2001) 2-site
> >> > very-slow exchange model, range of microsecond to second time scale.
> >> >
> >> >
> >> >
> >> > _______________________________________________
> >> > relax (http://www.nmr-relax.com)
> >> >
> >> > This is the relax-commits mailing list
> >> > [email protected]
> >> >
> >> > To unsubscribe from this list, get a password
> >> > reminder, or change your subscription options,
> >> > visit the list information page at
> >> > https://mail.gna.org/listinfo/relax-commits
> >>
> >> _______________________________________________
> >> relax (http://www.nmr-relax.com)
> >>
> >> This is the relax-devel mailing list
> >> [email protected]
> >>
> >>
> >> To unsubscribe from this list, get a password
> >> reminder, or change your subscription options,
> >> visit the list information page at
> >> https://mail.gna.org/listinfo/relax-devel
> >
> >
>
_______________________________________________
relax (http://www.nmr-relax.com)

This is the relax-devel mailing list
[email protected]

To unsubscribe from this list, get a password
reminder, or change your subscription options,
visit the list information page at
https://mail.gna.org/listinfo/relax-devel

Reply via email to