cloud-fan commented on a change in pull request #27239: [SPARK-30530][SQL] Fix 
filter pushdown for bad CSV records
URL: https://github.com/apache/spark/pull/27239#discussion_r367930591
 
 

 ##########
 File path: 
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/csv/UnivocityParser.scala
 ##########
 @@ -230,64 +230,55 @@ class UnivocityParser(
         () => getCurrentInput,
         () => None,
         new RuntimeException("Malformed CSV record"))
-    } else if (tokens.length != parsedSchema.length) {
+    }
+
+    var checkedTokens = tokens
+    var badRecordException: Option[Throwable] = None
+
+    if (tokens.length != parsedSchema.length) {
       // If the number of tokens doesn't match the schema, we should treat it 
as a malformed record.
       // However, we still have chance to parse some of the tokens, by adding 
extra null tokens in
       // the tail if the number is smaller, or by dropping extra tokens if the 
number is larger.
-      val checkedTokens = if (parsedSchema.length > tokens.length) {
+      checkedTokens = if (parsedSchema.length > tokens.length) {
         tokens ++ new Array[String](parsedSchema.length - tokens.length)
       } else {
         tokens.take(parsedSchema.length)
       }
-      def getPartialResult(): Option[InternalRow] = {
-        try {
-          convert(checkedTokens).headOption
-        } catch {
-          case _: BadRecordException => None
-        }
-      }
-      // For records with less or more tokens than the schema, tries to return 
partial results
-      // if possible.
-      throw BadRecordException(
-        () => getCurrentInput,
-        () => getPartialResult(),
-        new RuntimeException("Malformed CSV record"))
-    } else {
-      // When the length of the returned tokens is identical to the length of 
the parsed schema,
-      // we just need to:
-      //  1. Convert the tokens that correspond to the required schema.
-      //  2. Apply the pushdown filters to `requiredRow`.
-      var i = 0
-      val row = requiredRow.head
-      var skipRow = false
-      var badRecordException: Option[Throwable] = None
-      while (i < requiredSchema.length) {
-        try {
-          if (!skipRow) {
-            row(i) = valueConverters(i).apply(getToken(tokens, i))
-            if (csvFilters.skipRow(row, i)) {
-              skipRow = true
-            }
-          }
-          if (skipRow) {
-            row.setNullAt(i)
+      badRecordException = Some(new RuntimeException("Malformed CSV record"))
+    }
+    // When the length of the returned tokens is identical to the length of 
the parsed schema,
+    // we just need to:
+    //  1. Convert the tokens that correspond to the required schema.
+    //  2. Apply the pushdown filters to `requiredRow`.
+    var i = 0
+    val row = requiredRow.head
+    var skipRow = false
+    while (i < requiredSchema.length) {
+      try {
+        if (!skipRow) {
+          row(i) = valueConverters(i).apply(getToken(tokens, i))
 
 Review comment:
   if the first column is corrupted, and the predicate is `first_col is null`, 
what will happen?

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to