Github user leahmcguire commented on a diff in the pull request:

    https://github.com/apache/spark/pull/4087#discussion_r25443491
  
    --- Diff: 
mllib/src/test/scala/org/apache/spark/mllib/classification/NaiveBayesSuite.scala
 ---
    @@ -71,23 +86,67 @@ class NaiveBayesSuite extends FunSuite with 
MLlibTestSparkContext {
         assert(numOfPredictions < input.length / 5)
       }
     
    -  test("Naive Bayes") {
    +  def validateModelFit(piData: Array[Double], thetaData: 
Array[Array[Double]], model: NaiveBayesModel) = {
    +    def closeFit(d1: Double, d2: Double, precision: Double): Boolean = {
    +      (d1 - d2).abs <= precision
    +    }
    +    val modelIndex = (0 until piData.length).zip(model.labels.map(_.toInt))
    +    for (i <- modelIndex) {
    +      assert(closeFit(math.exp(piData(i._2)), math.exp(model.pi(i._1)), 
0.05))
    +    }
    +    for (i <- modelIndex) {
    +      for (j <- 0 until thetaData(i._2).length) {
    +        assert(closeFit(math.exp(thetaData(i._2)(j)), 
math.exp(model.theta(i._1)(j)), 0.05))
    +      }
    +    }
    +  }
    +
    +  test("Naive Bayes Multinomial") {
    +    val nPoints = 1000
    +
    +    val pi = Array(0.5, 0.1, 0.4).map(math.log)
    +    val theta = Array(
    +      Array(0.70, 0.10, 0.10, 0.10), // label 0
    +      Array(0.10, 0.70, 0.10, 0.10), // label 1
    +      Array(0.10, 0.10, 0.70, 0.10)  // label 2
    +    ).map(_.map(math.log))
    +
    +    val testData = NaiveBayesSuite.generateNaiveBayesInput(pi, theta, 
nPoints, 42, NaiveBayesModels.Multinomial)
    +    val testRDD = sc.parallelize(testData, 2)
    +    testRDD.cache()
    +
    +    val model = NaiveBayes.train(testRDD, 1.0, "Multinomial")
    +    validateModelFit(pi, theta, model)
    +
    +    val validationData = NaiveBayesSuite.generateNaiveBayesInput(pi, 
theta, nPoints, 17, NaiveBayesModels.Multinomial)
    +    val validationRDD = sc.parallelize(validationData, 2)
    +
    +    // Test prediction on RDD.
    +    
validatePrediction(model.predict(validationRDD.map(_.features)).collect(), 
validationData)
    +
    +    // Test prediction on Array.
    +    validatePrediction(validationData.map(row => 
model.predict(row.features)), validationData)
    +  }
    +
    +  test("Naive Bayes Bernoulli") {
         val nPoints = 10000
     
         val pi = Array(0.5, 0.3, 0.2).map(math.log)
         val theta = Array(
    -      Array(0.91, 0.03, 0.03, 0.03), // label 0
    -      Array(0.03, 0.91, 0.03, 0.03), // label 1
    -      Array(0.03, 0.03, 0.91, 0.03)  // label 2
    +      Array(0.50, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 
0.02, 0.40), // label 0
    +      Array(0.02, 0.70, 0.10, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 
0.02, 0.02), // label 1
    +      Array(0.02, 0.02, 0.60, 0.02,  0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 
0.02, 0.30)  // label 2
         ).map(_.map(math.log))
     
    -    val testData = NaiveBayesSuite.generateNaiveBayesInput(pi, theta, 
nPoints, 42)
    +
    +    val testData = NaiveBayesSuite.generateNaiveBayesInput(pi, theta, 
nPoints, 45, NaiveBayesModels.Bernoulli)
         val testRDD = sc.parallelize(testData, 2)
         testRDD.cache()
     
    -    val model = NaiveBayes.train(testRDD)
    +    val model = NaiveBayes.train(testRDD, 1.0, "Bernoulli") ///!!! this 
gives same result on both models check the math
    --- End diff --
    
    No this was resolved before the commit. I just forgot to remove the comment


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to