WeichenXu123 opened a new pull request #28279:
URL: https://github.com/apache/spark/pull/28279
### What changes were proposed in this pull request?
Fix Pyspark CrossValidator/TrainValidationSplit with pipeline estimator
cannot save and load model.
Most pyspark estimators/transformers inherit `JavaParams`, but some
estimators are special (in order to support pure python implemented nested
estimators/transformers):
* Pipeline
* OneVsRest
* CrossValidator
* TrainValidationSplit
But note that, currently, in pyspark, estimators listed above, their model
reader/writer do NOT support pure python implemented nested
estimators/transformers. Because they use java reader/writer wrapper as python
side reader/writer.
Pyspark CrossValidator/TrainValidationSplit model reader/writer require all
estimators define the `_transfer_param_map_to_java` and
`_transfer_param_map_from_java` (used in model read/write).
OneVsRest class already defines the two methods, but Pipeline do not, so it
lead to this bug.
In this PR I add `_transfer_param_map_to_java` and
`_transfer_param_map_from_java` into Pipeline class.
### Why are the changes needed?
Bug fix.
### Does this PR introduce any user-facing change?
No
### How was this patch tested?
Unit test to be added.
Manually test in pyspark shell:
1) CrossValidator with Simple Pipeline estimator
```
from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.evaluation import BinaryClassificationEvaluator
from pyspark.ml.feature import HashingTF, Tokenizer
from pyspark.ml.tuning import CrossValidator, CrossValidatorModel,
ParamGridBuilder
training = spark.createDataFrame([
(0, "a b c d e spark", 1.0),
(1, "b d", 0.0),
(2, "spark f g h", 1.0),
(3, "hadoop mapreduce", 0.0),
(4, "b spark who", 1.0),
(5, "g d a y", 0.0),
(6, "spark fly", 1.0),
(7, "was mapreduce", 0.0),
(8, "e spark program", 1.0),
(9, "a e c l", 0.0),
(10, "spark compile", 1.0),
(11, "hadoop software", 0.0)
], ["id", "text", "label"])
# Configure an ML pipeline, which consists of tree stages: tokenizer,
hashingTF, and lr.
tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(),
outputCol="features")
lr = LogisticRegression(maxIter=10)
pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])
paramGrid = ParamGridBuilder() \
.addGrid(hashingTF.numFeatures, [10, 100, 1000]) \
.addGrid(lr.regParam, [0.1, 0.01]) \
.build()
crossval = CrossValidator(estimator=pipeline,
estimatorParamMaps=paramGrid,
evaluator=BinaryClassificationEvaluator(),
numFolds=2) # use 3+ folds in practice
# Run cross-validation, and choose the best set of parameters.
cvModel = crossval.fit(training)
cvModel.save('/tmp/cv_model001')
CrossValidatorModel.load('/tmp/cv_model001')
```
2) CrossValidator with Pipeline estimator which include a OneVsRest
estimator stage, and OneVsRest estimator nest a LogisticRegression estimator.
```
from pyspark.ml.linalg import Vectors
from pyspark.ml import Estimator, Model
from pyspark.ml.classification import LogisticRegression,
LogisticRegressionModel, OneVsRest
from pyspark.ml.evaluation import BinaryClassificationEvaluator, \
MulticlassClassificationEvaluator, RegressionEvaluator
from pyspark.ml.linalg import Vectors
from pyspark.ml.param import Param, Params
from pyspark.ml.tuning import CrossValidator, CrossValidatorModel,
ParamGridBuilder, \
TrainValidationSplit, TrainValidationSplitModel
from pyspark.sql.functions import rand
from pyspark.testing.mlutils import SparkSessionTestCase
dataset = spark.createDataFrame(
[(Vectors.dense([0.0]), 0.0),
(Vectors.dense([0.4]), 1.0),
(Vectors.dense([0.5]), 0.0),
(Vectors.dense([0.6]), 1.0),
(Vectors.dense([1.0]), 1.0)] * 10,
["features", "label"])
ova = OneVsRest(classifier=LogisticRegression())
lr1 = LogisticRegression().setMaxIter(100)
lr2 = LogisticRegression().setMaxIter(150)
grid = ParamGridBuilder().addGrid(ova.classifier, [lr1, lr2]).build()
evaluator = MulticlassClassificationEvaluator()
pipeline = Pipeline(stages=[ova])
cv = CrossValidator(estimator=pipeline, estimatorParamMaps=grid,
evaluator=evaluator)
cvModel = cv.fit(dataset)
cvModel.save('/tmp/model002')
cvModel2 = CrossValidatorModel.load('/tmp/model002')
```
TrainValidationSplit testing code are similar so I do not paste them.
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]