wangyum commented on pull request #28741:
URL: https://github.com/apache/spark/pull/28741#issuecomment-640136037
It seems this solution cannot be fully optimized.
PostgreSQL:
```
Aggregate (cost=77.33..77.34 rows=1 width=128)
-> Nested Loop (cost=0.00..77.31 rows=1 width=32)
Join Filter: (store_sales.ss_sold_date_sk = date_dim.d_date_sk)
-> Nested Loop (cost=0.00..67.18 rows=1 width=36)
Join Filter: ((store_sales.ss_addr_sk =
customer_address.ca_address_sk) AND ((((customer_address.ca_state)::text = ANY
('{TX,OH,TX}'::text[])) AND (store_sales.ss_net_profit >=
'100'::numeric) AND (store_sales.ss_net_profit <= '200'::numeric)) OR
(((customer_address.ca_state)::text = ANY ('{OR,NM,KY}'::text[])) AND
(store_sales.ss_net_profit >= '150'::numeric) AND (s
tore_sales.ss_net_profit <= '300'::numeric)) OR
(((customer_address.ca_state)::text = ANY ('{VA,TX,MS}'::text[])) AND
(store_sales.ss_net_profit >= '50'::numeric) AND (store_sales.ss_net_profi
t <= '250'::numeric))))
-> Nested Loop (cost=0.00..56.90 rows=1 width=54)
Join Filter: ((store_sales.ss_cdemo_sk =
customer_demographics.cd_demo_sk) AND
((((customer_demographics.cd_marital_status)::text = 'M'::text) AND
((customer_demographics.
cd_education_status)::text = 'Advanced Degree'::text) AND
(store_sales.ss_sales_price >= 100.00) AND (store_sales.ss_sales_price <=
150.00) AND (household_demographics.hd_dep_count = 3)) OR ((
(customer_demographics.cd_marital_status)::text = 'S'::text) AND
((customer_demographics.cd_education_status)::text = 'College'::text) AND
(store_sales.ss_sales_price >= 50.00) AND (store_sale
s.ss_sales_price <= 100.00) AND (household_demographics.hd_dep_count = 1))
OR (((customer_demographics.cd_marital_status)::text = 'W'::text) AND
((customer_demographics.cd_education_status)::t
ext = '2 yr Degree'::text) AND (store_sales.ss_sales_price >= 150.00) AND
(store_sales.ss_sales_price <= 200.00) AND (household_demographics.hd_dep_count
= 1))))
-> Nested Loop (cost=0.00..46.10 rows=1 width=76)
Join Filter: (store_sales.ss_hdemo_sk =
household_demographics.hd_demo_sk)
-> Nested Loop (cost=0.00..33.61 rows=1
width=76)
Join Filter: (store_sales.ss_store_sk =
store.s_store_sk)
-> Seq Scan on store_sales
(cost=0.00..23.60 rows=1 width=80)
Filter: ((((ss_sales_price >= 100.00)
AND (ss_sales_price <= 150.00)) OR ((ss_sales_price >= 50.00) AND
(ss_sales_price <= 100.00)) OR ((ss_sales_price >
= 150.00) AND (ss_sales_price <= 200.00))) AND (((ss_net_profit >=
'100'::numeric) AND (ss_net_profit <= '200'::numeric)) OR ((ss_net_profit >=
'150'::numeric) AND (ss_net_profit <= '300'::num
eric)) OR ((ss_net_profit >= '50'::numeric) AND (ss_net_profit <=
'250'::numeric))))
-> Seq Scan on store (cost=0.00..10.00
rows=1 width=4)
-> Seq Scan on household_demographics
(cost=0.00..12.45 rows=3 width=8)
Filter: ((hd_dep_count = 3) OR
(hd_dep_count = 1) OR (hd_dep_count = 1))
-> Seq Scan on customer_demographics
(cost=0.00..10.75 rows=1 width=1036)
Filter: ((((cd_marital_status)::text = 'M'::text)
AND ((cd_education_status)::text = 'Advanced Degree'::text)) OR
(((cd_marital_status)::text = 'S'::text) AND ((cd_e
ducation_status)::text = 'College'::text)) OR (((cd_marital_status)::text =
'W'::text) AND ((cd_education_status)::text = '2 yr Degree'::text)))
-> Seq Scan on customer_address (cost=0.00..10.24 rows=1
width=520)
Filter: (((ca_country)::text = 'United States'::text)
AND (((ca_state)::text = ANY ('{TX,OH,TX}'::text[])) OR ((ca_state)::text = ANY
('{OR,NM,KY}'::text[])) OR ((ca_state
)::text = ANY ('{VA,TX,MS}'::text[]))))
-> Seq Scan on date_dim (cost=0.00..10.12 rows=1 width=4)
Filter: (d_year = 2001)
(22 rows)
```
After this PR(`set spark.sql.constraintPropagation.enabled=false` to ignore
infer `IsNotNull`):
```
*(7) HashAggregate(keys=[], functions=[avg(cast(ss_quantity#10 as bigint)),
avg(UnscaledValue(ss_ext_sales_price#15)),
avg(UnscaledValue(ss_ext_wholesale_cost#16)),
sum(UnscaledValue(ss_ext_wholesale_cost#16))])
+- Exchange SinglePartition, true, [id=#252]
+- *(6) HashAggregate(keys=[], functions=[partial_avg(cast(ss_quantity#10
as bigint)), partial_avg(UnscaledValue(ss_ext_sales_price#15)),
partial_avg(UnscaledValue(ss_ext_wholesale_cost#16)),
partial_sum(UnscaledValue(ss_ext_wholesale_cost#16))])
+- *(6) Project [ss_quantity#10, ss_ext_sales_price#15,
ss_ext_wholesale_cost#16]
+- *(6) BroadcastHashJoin [ss_hdemo_sk#5], [hd_demo_sk#61], Inner,
BuildRight, (((((((cd_marital_status#54 = M) AND (cd_education_status#55 =
Advanced Degree)) AND (ss_sales_price#13 >= 100.00)) AND (ss_sales_price#13 <=
150.00)) AND (hd_dep_count#64 = 3)) OR (((((cd_marital_status#54 = S) AND
(cd_education_status#55 = College)) AND (ss_sales_price#13 >= 50.00)) AND
(ss_sales_price#13 <= 100.00)) AND (hd_dep_count#64 = 1))) OR
(((((cd_marital_status#54 = W) AND (cd_education_status#55 = 2 yr Degree)) AND
(ss_sales_price#13 >= 150.00)) AND (ss_sales_price#13 <= 200.00)) AND
(hd_dep_count#64 = 1)))
:- *(6) Project [ss_hdemo_sk#5, ss_quantity#10,
ss_sales_price#13, ss_ext_sales_price#15, ss_ext_wholesale_cost#16,
cd_marital_status#54, cd_education_status#55]
: +- *(6) BroadcastHashJoin [ss_cdemo_sk#4], [cd_demo_sk#52],
Inner, BuildRight, ((((((cd_marital_status#54 = M) AND (cd_education_status#55
= Advanced Degree)) AND (ss_sales_price#13 >= 100.00)) AND (ss_sales_price#13
<= 150.00)) OR ((((cd_marital_status#54 = S) AND (cd_education_status#55 =
College)) AND (ss_sales_price#13 >= 50.00)) AND (ss_sales_price#13 <= 100.00)))
OR ((((cd_marital_status#54 = W) AND (cd_education_status#55 = 2 yr Degree))
AND (ss_sales_price#13 >= 150.00)) AND (ss_sales_price#13 <= 200.00)))
: :- *(6) Project [ss_cdemo_sk#4, ss_hdemo_sk#5,
ss_quantity#10, ss_sales_price#13, ss_ext_sales_price#15,
ss_ext_wholesale_cost#16]
: : +- *(6) BroadcastHashJoin [ss_sold_date_sk#0],
[d_date_sk#79], Inner, BuildRight
: : :- *(6) Project [ss_sold_date_sk#0, ss_cdemo_sk#4,
ss_hdemo_sk#5, ss_quantity#10, ss_sales_price#13, ss_ext_sales_price#15,
ss_ext_wholesale_cost#16]
: : : +- *(6) BroadcastHashJoin [ss_addr_sk#6],
[ca_address_sk#66], Inner, BuildRight, ((((ca_state#74 IN (TX,OH) AND
(ss_net_profit#22 >= 100.00)) AND (ss_net_profit#22 <= 200.00)) OR
((ca_state#74 IN (OR,NM,KY) AND (ss_net_profit#22 >= 150.00)) AND
(ss_net_profit#22 <= 300.00))) OR ((ca_state#74 IN (VA,TX,MS) AND
(ss_net_profit#22 >= 50.00)) AND (ss_net_profit#22 <= 250.00)))
: : : :- *(6) Project [ss_sold_date_sk#0,
ss_cdemo_sk#4, ss_hdemo_sk#5, ss_addr_sk#6, ss_quantity#10, ss_sales_price#13,
ss_ext_sales_price#15, ss_ext_wholesale_cost#16, ss_net_profit#22]
: : : : +- *(6) BroadcastHashJoin [ss_store_sk#7],
[s_store_sk#23], Inner, BuildRight
: : : : :- *(6) Filter ((((ss_net_profit#22 >=
100.00) AND (ss_net_profit#22 <= 200.00)) OR ((ss_net_profit#22 >= 150.00) AND
(ss_net_profit#22 <= 300.00))) OR ((ss_net_profit#22 >= 50.00) AND
(ss_net_profit#22 <= 250.00)))
: : : : : +- *(6) ColumnarToRow
: : : : : +- FileScan parquet
default.store_sales[ss_sold_date_sk#0,ss_cdemo_sk#4,ss_hdemo_sk#5,ss_addr_sk#6,ss_store_sk#7,ss_quantity#10,ss_sales_price#13,ss_ext_sales_price#15,ss_ext_wholesale_cost#16,ss_net_profit#22]
Batched: true, DataFilters: [((((ss_net_profit#22 >= 100.00) AND
(ss_net_profit#22 <= 200.00)) OR ((ss_net_profit#22 >= 150.0..., Format:
Parquet, Location:
InMemoryFileIndex[file:/Users/yumwang/opensource/spark/sql/core/spark-warehouse/org.apache.spark....,
PartitionFilters: [], PushedFilters:
[Or(Or(And(GreaterThanOrEqual(ss_net_profit,100.00),LessThanOrEqual(ss_net_profit,200.00)),And(Gr...,
ReadSchema:
struct<ss_sold_date_sk:int,ss_cdemo_sk:int,ss_hdemo_sk:int,ss_addr_sk:int,ss_store_sk:int,ss_quan...
: : : : +- BroadcastExchange
HashedRelationBroadcastMode(List(cast(input[0, int, true] as bigint))),
[id=#213]
: : : : +- *(1) ColumnarToRow
: : : : +- FileScan parquet
default.store[s_store_sk#23] Batched: true, DataFilters: [], Format: Parquet,
Location:
InMemoryFileIndex[file:/Users/yumwang/opensource/spark/sql/core/spark-warehouse/org.apache.spark....,
PartitionFilters: [], PushedFilters: [], ReadSchema: struct<s_store_sk:int>
: : : +- BroadcastExchange
HashedRelationBroadcastMode(List(cast(input[0, int, true] as bigint))),
[id=#222]
: : : +- *(2) Project [ca_address_sk#66,
ca_state#74]
: : : +- *(2) Filter ((ca_country#76 = United
States) AND ((ca_state#74 IN (TX,OH) OR ca_state#74 IN (OR,NM,KY)) OR
ca_state#74 IN (VA,TX,MS)))
: : : +- *(2) ColumnarToRow
: : : +- FileScan parquet
default.customer_address[ca_address_sk#66,ca_state#74,ca_country#76] Batched:
true, DataFilters: [(ca_country#76 = United States), ((ca_state#74 IN (TX,OH)
OR ca_state#74 IN (OR,NM,KY)) OR ca_st..., Format: Parquet, Location:
InMemoryFileIndex[file:/Users/yumwang/opensource/spark/sql/core/spark-warehouse/org.apache.spark....,
PartitionFilters: [], PushedFilters: [EqualTo(ca_country,United States),
Or(Or(In(ca_state, [TX,OH]),In(ca_state, [OR,NM,KY])),In(ca_s..., ReadSchema:
struct<ca_address_sk:int,ca_state:string,ca_country:string>
: : +- BroadcastExchange
HashedRelationBroadcastMode(List(cast(input[0, int, true] as bigint))),
[id=#231]
: : +- *(3) Project [d_date_sk#79]
: : +- *(3) Filter (d_year#85 = 2001)
: : +- *(3) ColumnarToRow
: : +- FileScan parquet
default.date_dim[d_date_sk#79,d_year#85] Batched: true, DataFilters:
[(d_year#85 = 2001)], Format: Parquet, Location:
InMemoryFileIndex[file:/Users/yumwang/opensource/spark/sql/core/spark-warehouse/org.apache.spark....,
PartitionFilters: [], PushedFilters: [EqualTo(d_year,2001)], ReadSchema:
struct<d_date_sk:int,d_year:int>
: +- BroadcastExchange
HashedRelationBroadcastMode(List(cast(input[0, int, true] as bigint))),
[id=#238]
: +- *(4) ColumnarToRow
: +- FileScan parquet
default.customer_demographics[cd_demo_sk#52,cd_marital_status#54,cd_education_status#55]
Batched: true, DataFilters: [], Format: Parquet, Location:
InMemoryFileIndex[file:/Users/yumwang/opensource/spark/sql/core/spark-warehouse/org.apache.spark....,
PartitionFilters: [], PushedFilters: [], ReadSchema:
struct<cd_demo_sk:int,cd_marital_status:string,cd_education_status:string>
+- BroadcastExchange
HashedRelationBroadcastMode(List(cast(input[0, int, true] as bigint))),
[id=#246]
+- *(5) Filter (((hd_dep_count#64 = 3) OR (hd_dep_count#64 =
1)) OR (hd_dep_count#64 = 1))
+- *(5) ColumnarToRow
+- FileScan parquet
default.household_demographics[hd_demo_sk#61,hd_dep_count#64] Batched: true,
DataFilters: [(((hd_dep_count#64 = 3) OR (hd_dep_count#64 = 1)) OR
(hd_dep_count#64 = 1))], Format: Parquet, Location:
InMemoryFileIndex[file:/Users/yumwang/opensource/spark/sql/core/spark-warehouse/org.apache.spark....,
PartitionFilters: [], PushedFilters:
[Or(Or(EqualTo(hd_dep_count,3),EqualTo(hd_dep_count,1)),EqualTo(hd_dep_count,1))],
ReadSchema: struct<hd_demo_sk:int,hd_dep_count:int>
```
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]