AngersZhuuuu commented on a change in pull request #29085:
URL: https://github.com/apache/spark/pull/29085#discussion_r458688383



##########
File path: 
sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveScriptTransformationSuite.scala
##########
@@ -206,75 +169,83 @@ class HiveScriptTransformationSuite extends SparkPlanTest 
with SQLTestUtils with
 
       val query = sql(
         s"""
-          |SELECT
-          |TRANSFORM(a, b, c, d, e)
-          |USING 'python $scriptFilePath' AS (a, b, c, d, e)
-          |FROM v
+           |SELECT TRANSFORM(a, b, c, d, e)
+           |USING 'python ${scriptFilePath}'
+           |FROM v
         """.stripMargin)
 
-      // In Hive 1.2, the string representation of a decimal omits trailing 
zeroes.
-      // But in Hive 2.3, it is always padded to 18 digits with trailing 
zeroes if necessary.
-      val decimalToString: Column => Column = if (HiveUtils.isHive23) {
-        c => c.cast("string")
-      } else {
-        c => c.cast("decimal(1, 0)").cast("string")
-      }
-      checkAnswer(query, identity, df.select(
-        'a.cast("string"),
-        'b.cast("string"),
-        'c.cast("string"),
-        decimalToString('d),
-        'e.cast("string")).collect())
+      // In hive default serde mode, if we don't define output schema, it will 
choose first
+      // two column as output schema (key: String, value: String)
+      checkAnswer(
+        query,
+        identity,
+        df.select(
+          'a.cast("string").as("key"),
+          'b.cast("string").as("value")).collect())
     }
   }
 
-  test("SPARK-30973: TRANSFORM should wait for the termination of the script 
(no serde)") {
+  test("SPARK-32106: TRANSFORM support complex data types as input and ouput 
type (hive serde)") {
     assume(TestUtils.testCommandAvailable("/bin/bash"))
+    withTempView("v") {
+      val df = Seq(
+        (1, "1", Array(0, 1, 2), Map("a" -> 1)),
+        (2, "2", Array(3, 4, 5), Map("b" -> 2)))
+        .toDF("a", "b", "c", "d")
+          .select('a, 'b, 'c, 'd, struct('a, 'b).as("e"))
+      df.createTempView("v")
 
-    val rowsDf = Seq("a", "b", "c").map(Tuple1.apply).toDF("a")
-    val e = intercept[SparkException] {
-      val plan =
-        new HiveScriptTransformationExec(
-          input = Seq(rowsDf.col("a").expr),
-          script = "some_non_existent_command",
-          output = Seq(AttributeReference("a", StringType)()),
-          child = rowsDf.queryExecution.sparkPlan,
-          ioschema = noSerdeIOSchema)
-      SparkPlanTest.executePlan(plan, hiveContext)
+      // Hive serde support ArrayType/MapType/StructType as input and output 
data type
+      checkAnswer(
+        df,
+        (child: SparkPlan) => createScriptTransformationExec(
+          input = Seq(
+            df.col("c").expr,
+            df.col("d").expr,
+            df.col("e").expr),
+          script = "cat",
+          output = Seq(
+            AttributeReference("c", ArrayType(IntegerType))(),
+            AttributeReference("d", MapType(StringType, IntegerType))(),
+            AttributeReference("e", StructType(
+              Seq(
+                StructField("col1", IntegerType, false),
+                StructField("col2", StringType, true))))()),
+          child = child,
+          ioschema = serdeIOSchema
+        ),
+        df.select('c, 'd, 'e).collect())
     }
-    assert(e.getMessage.contains("Subprocess exited with status"))
-    assert(uncaughtExceptionHandler.exception.isEmpty)
   }
 
-  test("SPARK-30973: TRANSFORM should wait for the termination of the script 
(with serde)") {
+  test("SPARK-32106: TRANSFORM don't support 
CalenderIntervalType/UserDefinedType (hive serde)") {
     assume(TestUtils.testCommandAvailable("/bin/bash"))
+    withTempView("v") {
+      val df = Seq(
+        (1, new CalendarInterval(7, 1, 1000), new 
TestUDT.MyDenseVector(Array(1, 2, 3))),
+        (1, new CalendarInterval(7, 1, 1000), new 
TestUDT.MyDenseVector(Array(1, 2, 3))))
+        .toDF("a", "b", "c")
+      df.createTempView("v")
 
-    val rowsDf = Seq("a", "b", "c").map(Tuple1.apply).toDF("a")
-    val e = intercept[SparkException] {
-      val plan =
-        new HiveScriptTransformationExec(
-          input = Seq(rowsDf.col("a").expr),
-          script = "some_non_existent_command",
-          output = Seq(AttributeReference("a", StringType)()),
-          child = rowsDf.queryExecution.sparkPlan,
-          ioschema = serdeIOSchema)
-      SparkPlanTest.executePlan(plan, hiveContext)
+     val e1 = intercept[Exception] {
+        sql(
+          """
+            |SELECT TRANSFORM(a, b) USING 'cat' AS (a, b)
+            |FROM v
+          """.stripMargin).collect()
+      }
+      assert(e1.getMessage.contains("scala.MatchError: CalendarIntervalType"))

Review comment:
       > Ah, I see. which code throws this match error?
   
   HiveInspectors$typeInfoConversions.toTypeInfo
   ```
    def toTypeInfo: TypeInfo = dt match {
         case ArrayType(elemType, _) =>
           getListTypeInfo(elemType.toTypeInfo)
         case StructType(fields) =>
           getStructTypeInfo(
             java.util.Arrays.asList(fields.map(_.name) : _*),
             java.util.Arrays.asList(fields.map(_.dataType.toTypeInfo) : _*))
         case MapType(keyType, valueType, _) =>
           getMapTypeInfo(keyType.toTypeInfo, valueType.toTypeInfo)
         case BinaryType => binaryTypeInfo
         case BooleanType => booleanTypeInfo
         case ByteType => byteTypeInfo
         case DoubleType => doubleTypeInfo
         case FloatType => floatTypeInfo
         case IntegerType => intTypeInfo
         case LongType => longTypeInfo
         case ShortType => shortTypeInfo
         case StringType => stringTypeInfo
         case d: DecimalType => decimalTypeInfo(d)
         case DateType => dateTypeInfo
         case TimestampType => timestampTypeInfo
         case NullType => voidTypeInfo
       }
   ```
   
   Since hive don't have corresponding data type, maybe we can convert it as 
String? and raise a pr to fix this.




----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]



---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to