HyukjinKwon commented on a change in pull request #29491:
URL: https://github.com/apache/spark/pull/29491#discussion_r476243169



##########
File path: python/docs/source/getting_started/quickstart.ipynb
##########
@@ -0,0 +1,1177 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Quickstart\n",
+    "\n",
+    "This is a short introduction and quickstart for the PySpark DataFrame 
API. PySpark DataFrames are lazily evaluated. They are implemented on top of 
[RDD](https://spark.apache.org/docs/latest/rdd-programming-guide.html#overview)s.
 When Spark 
[transforms](https://spark.apache.org/docs/latest/rdd-programming-guide.html#transformations)
 data, it does not immediately compute the transformation but plans how to 
compute later. When 
[actions](https://spark.apache.org/docs/latest/rdd-programming-guide.html#actions)
 such as `collect()` are explicitly called, the computation starts.\n",
+    "This notebook shows the basic usages of the DataFrame, geared mainly for 
new users. You can run the latest version of these examples by yourself on a 
live notebook 
[here](https://mybinder.org/v2/gh/databricks/apache/master?filepath=python%2Fdocs%2Fsource%2Fgetting_started%2Fquickstart.ipynb).\n",
+    "\n",
+    "There are also other useful information in Apache Spark documentation 
site, see the latest version of [Spark SQL and 
DataFrames](https://spark.apache.org/docs/latest/sql-programming-guide.html), 
[RDD Programming 
Guide](https://spark.apache.org/docs/latest/rdd-programming-guide.html), 
[Structured Streaming Programming 
Guide](https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html),
 [Spark Streaming Programming 
Guide](https://spark.apache.org/docs/latest/streaming-programming-guide.html) 
and [Machine Learning Library (MLlib) 
Guide](https://spark.apache.org/docs/latest/ml-guide.html).\n",
+    "\n",
+    "Usually PySaprk applications start with initializing `SparkSession` which 
is the entry point of PySpark as below. In case of running it in PySpark shell 
via <code>pyspark</code> executable, the shell automatically creates the 
session in the variable <code>spark</code> for users."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from pyspark.sql import SparkSession\n",
+    "\n",
+    "spark = SparkSession.builder.getOrCreate()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## DataFrame Creation\n",
+    "\n",
+    "A PySpark DataFrame can be created via 
`pyspark.sql.SparkSession.createDataFrame` typically by passing a list of 
lists, tuples, dictionaries and `pyspark.sql.Row`s, a [pandas 
DataFrame](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html) 
and an RDD consisting of such a list.\n",
+    "`pyspark.sql.SparkSession.createDataFrame` takes the `schema` argument to 
specify the schema of the DataFrame. When it is omitted, PySpark infers the 
corresponding schema by taking a sample from the data.\n",
+    "\n",
+    "The example below creates a PySpark DataFrame from a list of rows"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "DataFrame[a: bigint, b: double, c: string, d: date, e: timestamp]"
+      ]
+     },
+     "execution_count": 2,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "import datetime\n",
+    "import pandas as pd\n",
+    "from pyspark.sql import Row\n",
+    "\n",
+    "df = spark.createDataFrame([\n",
+    "    Row(a=1, b=2., c='string1', d=datetime.date(2000, 1, 1), 
e=datetime.datetime(2000, 1, 1, 12, 0)),\n",
+    "    Row(a=2, b=3., c='string2', d=datetime.date(2000, 2, 1), 
e=datetime.datetime(2000, 1, 2, 12, 0)),\n",
+    "    Row(a=4, b=5., c='string3', d=datetime.date(2000, 3, 1), 
e=datetime.datetime(2000, 1, 3, 12, 0))\n",
+    "])\n",
+    "df"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Create a PySpark DataFrame with the schema."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "DataFrame[a: bigint, b: double, c: string, d: date, e: timestamp]"
+      ]
+     },
+     "execution_count": 3,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df = spark.createDataFrame([\n",
+    "    (1, 2., 'string1', datetime.date(2000, 1, 1), datetime.datetime(2000, 
1, 1, 12, 0)),\n",
+    "    (2, 3., 'string2', datetime.date(2000, 2, 1), datetime.datetime(2000, 
1, 2, 12, 0)),\n",
+    "    (3, 4., 'string3', datetime.date(2000, 3, 1), datetime.datetime(2000, 
1, 3, 12, 0))\n",
+    "], schema='a long, b double, c string, d date, e timestamp')\n",
+    "df"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Create a PySpark DataFrame from a pandas DataFrame"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "DataFrame[a: bigint, b: double, c: string, d: date, e: timestamp]"
+      ]
+     },
+     "execution_count": 4,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "pandas_df = pd.DataFrame({\n",
+    "    'a': [1, 2, 3],\n",
+    "    'b': [2., 3., 4.],\n",
+    "    'c': ['string1', 'string2', 'string3'],\n",
+    "    'd': [datetime.date(2000, 1, 1), datetime.date(2000, 2, 1), 
datetime.date(2000, 3, 1)],\n",
+    "    'e': [datetime.datetime(2000, 1, 1, 12, 0), datetime.datetime(2000, 
1, 2, 12, 0), datetime.datetime(2000, 1, 3, 12, 0)]\n",
+    "})\n",
+    "df = spark.createDataFrame(pandas_df)\n",
+    "df"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Create a PySpark DataFrame from an RDD consisting of a list of tuples."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "DataFrame[a: bigint, b: double, c: string, d: date, e: timestamp]"
+      ]
+     },
+     "execution_count": 5,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "rdd = spark.sparkContext.parallelize([\n",
+    "    (1, 2., 'string1', datetime.date(2000, 1, 1), datetime.datetime(2000, 
1, 1, 12, 0)),\n",
+    "    (2, 3., 'string2', datetime.date(2000, 2, 1), datetime.datetime(2000, 
1, 2, 12, 0)),\n",
+    "    (3, 4., 'string3', datetime.date(2000, 3, 1), datetime.datetime(2000, 
1, 3, 12, 0))\n",
+    "])\n",
+    "df = spark.createDataFrame(rdd, schema=['a', 'b', 'c', 'd', 'e'])\n",
+    "df"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The DataFrames created above all have the same results and schema."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+---+---+-------+----------+-------------------+\n",
+      "|  a|  b|      c|         d|                  e|\n",
+      "+---+---+-------+----------+-------------------+\n",
+      "|  1|2.0|string1|2000-01-01|2000-01-01 12:00:00|\n",
+      "|  2|3.0|string2|2000-02-01|2000-01-02 12:00:00|\n",
+      "|  3|4.0|string3|2000-03-01|2000-01-03 12:00:00|\n",
+      "+---+---+-------+----------+-------------------+\n",
+      "\n",
+      "root\n",
+      " |-- a: long (nullable = true)\n",
+      " |-- b: double (nullable = true)\n",
+      " |-- c: string (nullable = true)\n",
+      " |-- d: date (nullable = true)\n",
+      " |-- e: timestamp (nullable = true)\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "# All DataFrames above result same.\n",
+    "df.show()\n",
+    "df.printSchema()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Viewing Data\n",
+    "\n",
+    "The top rows of a DataFrame can be displayed using `DataFrame.show()`."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+---+---+-------+----------+-------------------+\n",
+      "|  a|  b|      c|         d|                  e|\n",
+      "+---+---+-------+----------+-------------------+\n",
+      "|  1|2.0|string1|2000-01-01|2000-01-01 12:00:00|\n",
+      "+---+---+-------+----------+-------------------+\n",
+      "only showing top 1 row\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "df.show(1)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Alternatively, you can enable `spark.sql.repl.eagerEval.enabled` 
configuration for the eager evaluation of PySpark DataFrame in notebooks such 
as Jupyter. The number of rows to show can be controled via 
`spark.sql.repl.eagerEval.maxNumRows` configuration."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<table border='1'>\n",
+       "<tr><th>a</th><th>b</th><th>c</th><th>d</th><th>e</th></tr>\n",
+       
"<tr><td>1</td><td>2.0</td><td>string1</td><td>2000-01-01</td><td>2000-01-01 
12:00:00</td></tr>\n",
+       
"<tr><td>2</td><td>3.0</td><td>string2</td><td>2000-02-01</td><td>2000-01-02 
12:00:00</td></tr>\n",
+       
"<tr><td>3</td><td>4.0</td><td>string3</td><td>2000-03-01</td><td>2000-01-03 
12:00:00</td></tr>\n",
+       "</table>\n"
+      ],
+      "text/plain": [
+       "DataFrame[a: bigint, b: double, c: string, d: date, e: timestamp]"
+      ]
+     },
+     "execution_count": 8,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "spark.conf.set('spark.sql.repl.eagerEval.enabled', True)\n",
+    "df"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The rows can also be shown vertically. This is useful when rows are too 
long to show horizontally."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "-RECORD 0------------------\n",
+      " a   | 1                   \n",
+      " b   | 2.0                 \n",
+      " c   | string1             \n",
+      " d   | 2000-01-01          \n",
+      " e   | 2000-01-01 12:00:00 \n",
+      "only showing top 1 row\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "df.show(1, vertical=True)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "You can see the DataFrame's schema and column names as follows:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "['a', 'b', 'c', 'd', 'e']"
+      ]
+     },
+     "execution_count": 10,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df.columns"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "root\n",
+      " |-- a: long (nullable = true)\n",
+      " |-- b: double (nullable = true)\n",
+      " |-- c: string (nullable = true)\n",
+      " |-- d: date (nullable = true)\n",
+      " |-- e: timestamp (nullable = true)\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "df.printSchema()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Show the summary of the DataFrame"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+-------+---+---+-------+\n",
+      "|summary|  a|  b|      c|\n",
+      "+-------+---+---+-------+\n",
+      "|  count|  3|  3|      3|\n",
+      "|   mean|2.0|3.0|   null|\n",
+      "| stddev|1.0|1.0|   null|\n",
+      "|    min|  1|2.0|string1|\n",
+      "|    max|  3|4.0|string3|\n",
+      "+-------+---+---+-------+\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "df.describe().show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "`DataFrame.collect()` collects the distributed data to the driver side as 
the local data in Python. Note that this can throw an out-of-memory error when 
the dataset is too larget to fit in the driver side because it collects all the 
data from executors to the driver side."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[Row(a=1, b=2.0, c='string1', d=datetime.date(2000, 1, 1), 
e=datetime.datetime(2000, 1, 1, 12, 0)),\n",
+       " Row(a=2, b=3.0, c='string2', d=datetime.date(2000, 2, 1), 
e=datetime.datetime(2000, 1, 2, 12, 0)),\n",
+       " Row(a=3, b=4.0, c='string3', d=datetime.date(2000, 3, 1), 
e=datetime.datetime(2000, 1, 3, 12, 0))]"
+      ]
+     },
+     "execution_count": 13,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df.collect()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "In order to avoid throwing an out-of-memory exception, use 
`DataFrame.take()` or `DataFrame.tail()`."

Review comment:
       Maybe your PySpark was lower than 3.0 (?). Seems working fine in Binder 
and Python 3.0:
   ![Screen Shot 2020-08-25 at 4 42 02 
PM](https://user-images.githubusercontent.com/6477701/91146620-18c10b00-e6f2-11ea-90d2-7ecaa8546140.png)
   This API was added from Spark 3.0.
   




----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]



---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to