ulysses-you commented on a change in pull request #29749:
URL: https://github.com/apache/spark/pull/29749#discussion_r490212524
##########
File path: sql/hive/src/main/scala/org/apache/spark/sql/hive/hiveUDFs.scala
##########
@@ -69,6 +70,23 @@ private[hive] case class HiveSimpleUDF(
udfType != null && udfType.deterministic() && !udfType.stateful()
}
+ override def inputTypes: Seq[AbstractDataType] = {
+ val inTypes = children.map(_.dataType)
Review comment:
The `ScalaUDF` also implicit convert input type to expected type at
`ImplicitTypeCasts`.
Let's say we have a udf `Array[Double] => Double = { data => data.sum }` and
we run `spark.sql("select udf(array(1.0, 1.1, 1.2))")`. Then
`ImplicitTypeCasts` will cast `array<decimal>` to `array<double>`.
But Hive udf can't enjoy it, now we only use Hive `ObjectInspector` to
convert data type at running time. It's the difference.
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]