HyukjinKwon commented on a change in pull request #29806: URL: https://github.com/apache/spark/pull/29806#discussion_r494009107
########## File path: python/docs/source/user_guide/python_packaging.rst ########## @@ -0,0 +1,220 @@ +.. Licensed to the Apache Software Foundation (ASF) under one + or more contributor license agreements. See the NOTICE file + distributed with this work for additional information + regarding copyright ownership. The ASF licenses this file + to you under the Apache License, Version 2.0 (the + "License"); you may not use this file except in compliance + with the License. You may obtain a copy of the License at + +.. http://www.apache.org/licenses/LICENSE-2.0 + +.. Unless required by applicable law or agreed to in writing, + software distributed under the License is distributed on an + "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + KIND, either express or implied. See the License for the + specific language governing permissions and limitations + under the License. + + +################ +Python packaging +################ + +When you want to run your PySpark application on a cluster (like YARN, Kubernetes, Mesos, ..) you need to make sure that the your code +and all used libraries are available on the executors. + +As an example let's say you may want to run the `Pandas UDF's examples <arrow_pandas.rst#series-to-scalar>`_. +As it uses pyarrow as an underlying implementation we need to make sure to have pyarrow installed on each executor on the cluster. Otherwise you may get errors such as +``ModuleNotFoundError: No module named 'pyarrow'``. + +Here is the script ``main.py`` from the previous example that will be executed on the cluster: + +.. code-block:: python + + import pandas as pd + from pyspark.sql.functions import pandas_udf, PandasUDFType + from pyspark.sql import SparkSession + + def main(spark): + df = spark.createDataFrame( + [(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)], + ("id", "v")) + + @pandas_udf("double", PandasUDFType.GROUPED_AGG) + def mean_udf(v: pd.Series): + return v.mean() + + print(df.groupby("id").agg(mean_udf(df['v'])).collect()) + + + if __name__ == "__main__": + spark = SparkSession.builder.getOrCreate() + main(spark) + + +There are multiple ways to ship the dependencies to the cluster: + +- Using py-files +- Using a zipped virtual environment +- Using PEX +- Using Docker + + +************** +Using py-files +************** + +PySpark allows to upload python files to the executors by setting the configuration setting ``spark.submit.pyFiles`` or by directly calling `addPyFile +<../reference/api/pyspark.SparkContext.addPyFile.rst>`_ on the SparkContext. + +This is an easy way to ship additional custom Python code to the cluster. You can just add individual files or zip whole packages and upload them. +Using `addPyFile <../reference/api/pyspark.SparkContext.addPyFile.rst>`_ allows to upload code even after having started your job. + +It doesn't allow to add packages built as `Wheels <https://www.python.org/dev/peps/pep-0427/>`_ and therefore doesn't allowing to include dependencies with native code. + + +********************************** +Using a zipped virtual environment Review comment: Yeah, it does. ########## File path: python/docs/source/user_guide/python_packaging.rst ########## @@ -0,0 +1,220 @@ +.. Licensed to the Apache Software Foundation (ASF) under one + or more contributor license agreements. See the NOTICE file + distributed with this work for additional information + regarding copyright ownership. The ASF licenses this file + to you under the Apache License, Version 2.0 (the + "License"); you may not use this file except in compliance + with the License. You may obtain a copy of the License at + +.. http://www.apache.org/licenses/LICENSE-2.0 + +.. Unless required by applicable law or agreed to in writing, + software distributed under the License is distributed on an + "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + KIND, either express or implied. See the License for the + specific language governing permissions and limitations + under the License. + + +################ +Python packaging +################ + +When you want to run your PySpark application on a cluster (like YARN, Kubernetes, Mesos, ..) you need to make sure that the your code +and all used libraries are available on the executors. + +As an example let's say you may want to run the `Pandas UDF's examples <arrow_pandas.rst#series-to-scalar>`_. +As it uses pyarrow as an underlying implementation we need to make sure to have pyarrow installed on each executor on the cluster. Otherwise you may get errors such as +``ModuleNotFoundError: No module named 'pyarrow'``. + +Here is the script ``main.py`` from the previous example that will be executed on the cluster: + +.. code-block:: python + + import pandas as pd + from pyspark.sql.functions import pandas_udf, PandasUDFType + from pyspark.sql import SparkSession + + def main(spark): + df = spark.createDataFrame( + [(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)], + ("id", "v")) + + @pandas_udf("double", PandasUDFType.GROUPED_AGG) + def mean_udf(v: pd.Series): + return v.mean() + + print(df.groupby("id").agg(mean_udf(df['v'])).collect()) + + + if __name__ == "__main__": + spark = SparkSession.builder.getOrCreate() + main(spark) + + +There are multiple ways to ship the dependencies to the cluster: + +- Using py-files +- Using a zipped virtual environment +- Using PEX +- Using Docker + + +************** +Using py-files +************** + +PySpark allows to upload python files to the executors by setting the configuration setting ``spark.submit.pyFiles`` or by directly calling `addPyFile +<../reference/api/pyspark.SparkContext.addPyFile.rst>`_ on the SparkContext. + +This is an easy way to ship additional custom Python code to the cluster. You can just add individual files or zip whole packages and upload them. +Using `addPyFile <../reference/api/pyspark.SparkContext.addPyFile.rst>`_ allows to upload code even after having started your job. + +It doesn't allow to add packages built as `Wheels <https://www.python.org/dev/peps/pep-0427/>`_ and therefore doesn't allowing to include dependencies with native code. + + +********************************** +Using a zipped virtual environment +********************************** + +The idea of zipped environments is to zip your whole `virtual environment <https://docs.python.org/3/tutorial/venv.html>`_, +ship it to the cluster, unzip it remotly and target the Python interpreter from inside this zipped environment. + +Zip your virtual environment +---------------------------- + +You can zip the virtual environment on your own or use tools for doing this: + +* `conda-pack <https://conda.github.io/conda-pack/spark.html>`_ for conda environments +* `venv-pack <https://jcristharif.com/venv-pack/spark.html>`_ for virtual environments + +Example with conda-pack: + +.. code-block:: bash + + conda create -y -n conda_env -c conda-forge \ + pyspark==3.0.1 pyarrow==0.15.1 \ + pandas==0.25.3 conda-pack==0.4.0 + conda activate conda_env + conda pack -f -o conda_env.tar.gz + +Upload it to the Spark executors +-------------------------------- + +The unzip will be done by Spark when using target ``--archives`` option in spark-submit +or setting ``spark.yarn.dist.archives`` configuration. + +Example with spark-submit on YARN: + +.. code-block:: bash + + export PYSPARK_DRIVER_PYTHON=python + export PYSPARK_PYTHON=./environment/bin/python + spark-submit --master=yarn --deploy-mode client \ + --archives conda_env.tar.gz#environment \ + main.py + +Example using SparkSession.builder on YARN: + +.. code-block:: python + + os.environ['PYSPARK_PYTHON'] = "./environment/bin/python" + builder = SparkSession.builder \ + .master("yarn") \ + .config("spark.yarn.dist.archives", + "conda_env.tar.gz#environment") + spark = builder.getOrCreate() + main(spark) + + +********* +Using PEX +********* + +`PEX <https://github.com/pantsbuild/pex>`_ is a library for generating .pex (Python EXecutable) files. +A PEX file is a self contained executable Python environment. It can be seen as the Python equivalent of Java uber-JARs (aka fat JARs). + +You need to build the PEX file somewhere with all your requirements and then upload it to each Spark executor. + +Using the CLI to build the PEX file +----------------------------------- + +.. code-block:: bash + + pex pyspark==3.0.1 pyarrow==0.15.1 pandas==0.25.3 -o myarchive.pex + + +Invoking the pex file will by default invoke the Python interpreter. pyarrow, pandas and pyspark will be included in the pex file. + +.. code-block:: bash + + ./myarchive.pex + Python 3.6.6 (default, Jan 26 2019, 16:53:05) + (InteractiveConsole) + >>> import pyarrow + >>> import pandas + >>> import pyspark + >>> + +This can also be done directly with the Python API. `More infos <https://pex.readthedocs.io/en/stable/buildingpex.html>`_ on how to build PEX files. + +Upload it to the Spark executors +-------------------------------- + +The upload can be done by setting ``--files`` option in spark-submit or setting ``spark.files`` configuration (``spark.yarn.dist.files`` on YARN) +and changing the ``PYSPARK_PYTHON`` environment variable to change the Python interpreter to the PEX executable on each executor. + +Example with spark-submit on YARN: + +.. code-block:: bash + + export PYSPARK_DRIVER_PYTHON=python + export PYSPARK_PYTHON=./myarchive.pex + spark-submit --master=yarn --deploy-mode client \ + --files myarchive.pex \ + main.py + +Example using SparkSession.builder on YARN: + +.. code-block:: python + + import os + from pyspark.sql import SparkSession + from main import main + os.environ['PYSPARK_PYTHON']="./myarchive.pex" + builder = SparkSession.builder + builder.master("yarn") \ + .config("spark.submit.deployMode", "client") \ + .config("spark.yarn.dist.files", "myarchive.pex") + spark = builder.getOrCreate() + main(spark) + +Notes +----- + +The Python interpreter that has been used to generate the PEX file must be available on each executor. PEX doesn't include the Python interpreter. + +In YARN cluster mode you may also need to set ``PYSPARK_PYTHON`` environment variable on the AppMaster ``--conf spark.yarn.appMasterEnv.PYSPARK_PYTHON=./myarchive.pex``. + +An end-to-end Docker example for deploying a standalone PySpark with ``SparkSession.builder`` and PEX +can be found `here <https://github.com/criteo/cluster-pack/blob/master/examples/spark-with-S3/README.md>`_ +(it uses cluster-pack, a library on top of PEX that automatizes the the intermediate step of having to create & upload the PEX manually). + + +********************************** +Using Docker +********************************** + +Deploy you Spark application as usual with docker containers (on Standalone, Mesos, Kubernetes) and install all required packages globally in the Docker container. + + +***************************************************** +What about the Spark JARs/Python code in itsself ? +***************************************************** + +PySpark should be included in the PEX/zipped env in order to be shipped along the other libraries. + +The Spark jars will be picked up: +- from ``SPARK_HOME`` if this environment variable is set +- from the pyspark package if ``SPARK_HOME`` is not set (it allows to consistently use same pyspark package) +- you can also set the ``spark.jars``, ``spark.yarn.dist.jars``, ``spark.yarn.dist.archives`` parameters to make them available directly on distributed storage Review comment: ```suggestion .. Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at .. http://www.apache.org/licenses/LICENSE-2.0 .. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ========================= 3rd Party Python Packages ========================= When you want to run your PySpark application on a cluster such as YARN, Kubernetes, Mesos, etc., you need to make sure that the your code and all used libraries are available on the executors. As an example let's say you may want to run the `Pandas UDF's examples <arrow_pandas.rst#series-to-scalar>`_. As it uses pyarrow as an underlying implementation we need to make sure to have pcyarrow installed on each executor on the cluster. Otherwise you may get errors such as ``ModuleNotFoundError: No module named 'pyarrow'``. Here is the script ``app.py`` from the previous example that will be executed on the cluster: .. code-block:: python import pandas as pd from pyspark.sql.functions import pandas_udf from pyspark.sql import SparkSession def main(spark): df = spark.createDataFrame( [(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)], ("id", "v")) @pandas_udf("double") def mean_udf(v: pd.Series) -> float: return v.mean() print(df.groupby("id").agg(mean_udf(df['v'])).collect()) if __name__ == "__main__": main(SparkSession.builder.getOrCreate()) There are multiple ways to ship the dependencies to the cluster: - Using PySpark Native Features - Using Zipped Virtual Environment - Using PEX Using PySpark Native Features ----------------------------- PySpark allows to upload Python files (``.py``), zipped Python packages (``.zip``), and Egg files (``.egg``) to the executors by setting the configuration setting ``spark.submit.pyFiles`` or by directly calling :meth:`pyspark.SparkContext.addPyFile`. This is an easy way to ship additional custom Python code to the cluster. You can just add individual files or zip whole packages and upload them. Using :meth:`pyspark.SparkContext.addPyFile` allows to upload code even after having started your job. Note that it doesn't allow to add packages built as `Wheels <https://www.python.org/dev/peps/pep-0427/>`_ and therefore doesn't allowing to include dependencies with native code. Using Zipped Virtual Environment -------------------------------- The idea of zipped environments is to zip your whole `virtual environment <https://docs.python.org/3/tutorial/venv.html>`_, ship it to the cluster, unzip it remotly and target the Python interpreter from inside this zipped environment. Note that this is currently supported *only for YARN*. Zip Virtual Environment ~~~~~~~~~~~~~~~~~~~~~~~ You can zip the virtual environment on your own or use tools for doing this: * `conda-pack <https://conda.github.io/conda-pack/spark.html>`_ for conda environments * `venv-pack <https://jcristharif.com/venv-pack/spark.html>`_ for virtual environments Example with `conda-pack`: .. code-block:: bash conda create -y -n conda_env -c conda-forge \ pyspark==3.0.1 pyarrow==0.15.1 pandas==0.25.3 conda-pack==0.4.0 conda activate conda_env conda pack -f -o conda_env.tar.gz Upload to Spark Executors ~~~~~~~~~~~~~~~~~~~~~~~~~ The unzip will be done by Spark when using target ``--archives`` option in spark-submit or setting ``spark.yarn.dist.archives`` configuration. Example with ``spark-submit``: .. code-block:: bash export PYSPARK_DRIVER_PYTHON=python export PYSPARK_PYTHON=./environment/bin/python spark-submit --master=yarn --deploy-mode client \ --archives conda_env.tar.gz#environment app.py Example using ``SparkSession.builder``: .. code-block:: python import os from pyspark.sql import SparkSession from app import main os.environ['PYSPARK_PYTHON'] = "./environment/bin/python" builder = SparkSession.builder.master("yarn").config( "spark.yarn.dist.archives", "conda_env.tar.gz#environment") spark = builder.getOrCreate() main(spark) Using PEX --------- `PEX <https://github.com/pantsbuild/pex>`_ is a library for generating ``.pex`` (Python EXecutable) files. A PEX file is a self contained executable Python environment. It can be seen as the Python equivalent of Java uber-JARs (a.k.a. fat JARs). You need to build the PEX file somewhere with all your requirements and then upload it to each Spark executor. Using CLI to Build PEX file ~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: bash pex pyspark==3.0.1 pyarrow==0.15.1 pandas==0.25.3 -o myarchive.pex Invoking the PEX file will by default invoke the Python interpreter. pyarrow, pandas and pyspark will be included in the PEX file. .. code-block:: bash ./myarchive.pex Python 3.6.6 (default, Jan 26 2019, 16:53:05) (InteractiveConsole) >>> import pyarrow >>> import pandas >>> import pyspark >>> This can also be done directly with the Python API. For more information on how to build PEX files, please refer to `Building .pex files <https://pex.readthedocs.io/en/stable/buildingpex.html>`_ Upload to Spark Executors ~~~~~~~~~~~~~~~~~~~~~~~~~ The upload can be done by setting ``--files`` option in spark-submit or setting ``spark.files`` configuration (``spark.yarn.dist.files`` on YARN) and changing the ``PYSPARK_PYTHON`` environment variable to change the Python interpreter to the PEX executable on each executor. .. TODO: we should also document the way on other cluster modes. Example with ``spark-submit`` on YARN: .. code-block:: bash export PYSPARK_DRIVER_PYTHON=python export PYSPARK_PYTHON=./myarchive.pex spark-submit --master=yarn --deploy-mode client --files myarchive.pex app.py Example using ``SparkSession.builder`` on YARN: .. code-block:: python import os from pyspark.sql import SparkSession from app import main os.environ['PYSPARK_PYTHON']="./myarchive.pex" builder = SparkSession.builder builder.master("yarn") \ .config("spark.submit.deployMode", "client") \ .config("spark.yarn.dist.files", "myarchive.pex") spark = builder.getOrCreate() main(spark) Notes ~~~~~ * The Python interpreter that has been used to generate the PEX file must be available on each executor. PEX doesn't include the Python interpreter. * In YARN cluster mode you may also need to set ``PYSPARK_PYTHON`` environment variable on the AppMaster ``--conf spark.yarn.appMasterEnv.PYSPARK_PYTHON=./myarchive.pex``. * An end-to-end Docker example for deploying a standalone PySpark with ``SparkSession.builder`` and PEX can be found `here <https://github.com/criteo/cluster-pack/blob/master/examples/spark-with-S3/README.md>`_ - it uses cluster-pack, a library on top of PEX that automatizes the the intermediate step of having to create & upload the PEX manually. ``` ########## File path: python/docs/source/user_guide/python_packaging.rst ########## @@ -0,0 +1,201 @@ +.. Licensed to the Apache Software Foundation (ASF) under one + or more contributor license agreements. See the NOTICE file + distributed with this work for additional information + regarding copyright ownership. The ASF licenses this file + to you under the Apache License, Version 2.0 (the + "License"); you may not use this file except in compliance + with the License. You may obtain a copy of the License at + +.. http://www.apache.org/licenses/LICENSE-2.0 + +.. Unless required by applicable law or agreed to in writing, + software distributed under the License is distributed on an + "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + KIND, either express or implied. See the License for the + specific language governing permissions and limitations + under the License. + + +========================= +3rd Party Python Packages +========================= + +When you want to run your PySpark application on a cluster such as YARN, Kubernetes, Mesos, etc., you need to make +sure that the your code and all used libraries are available on the executors. + +As an example let's say you may want to run the `Pandas UDF's examples <arrow_pandas.rst#series-to-scalar>`_. +As it uses pyarrow as an underlying implementation we need to make sure to have pcyarrow installed on each executor Review comment: ```suggestion As it uses pyarrow as an underlying implementation we need to make sure to have pyarrow installed on each executor ``` ########## File path: python/docs/source/user_guide/index.rst ########## @@ -24,4 +24,5 @@ User Guide :maxdepth: 2 arrow_pandas + python_packaging Review comment: No big deal but I would rename the file `python_packaging` to `python_packages`. ########## File path: python/docs/source/user_guide/python_packaging.rst ########## @@ -0,0 +1,201 @@ +.. Licensed to the Apache Software Foundation (ASF) under one + or more contributor license agreements. See the NOTICE file + distributed with this work for additional information + regarding copyright ownership. The ASF licenses this file + to you under the Apache License, Version 2.0 (the + "License"); you may not use this file except in compliance + with the License. You may obtain a copy of the License at + +.. http://www.apache.org/licenses/LICENSE-2.0 + +.. Unless required by applicable law or agreed to in writing, + software distributed under the License is distributed on an + "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + KIND, either express or implied. See the License for the + specific language governing permissions and limitations + under the License. + + +========================= +3rd Party Python Packages +========================= + +When you want to run your PySpark application on a cluster such as YARN, Kubernetes, Mesos, etc., you need to make +sure that the your code and all used libraries are available on the executors. + +As an example let's say you may want to run the `Pandas UDF's examples <arrow_pandas.rst#series-to-scalar>`_. +As it uses pyarrow as an underlying implementation we need to make sure to have pyarrow installed on each executor +on the cluster. Otherwise you may get errors such as ``ModuleNotFoundError: No module named 'pyarrow'``. + +Here is the script ``app.py`` from the previous example that will be executed on the cluster: + +.. code-block:: python + + import pandas as pd + from pyspark.sql.functions import pandas_udf + from pyspark.sql import SparkSession + + def main(spark): + df = spark.createDataFrame( + [(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)], + ("id", "v")) + + @pandas_udf("double") + def mean_udf(v: pd.Series) -> float: + return v.mean() + + print(df.groupby("id").agg(mean_udf(df['v'])).collect()) + + + if __name__ == "__main__": + main(SparkSession.builder.getOrCreate()) + + +There are multiple ways to ship the dependencies to the cluster: + +- Using PySpark Native Features +- Using Zipped Virtual Environment +- Using PEX + + +Using PySpark Native Features +----------------------------- + +PySpark allows to upload Python files (``.py``), zipped Python packages (``.zip``), and Egg files (``.egg``) +to the executors by setting the configuration setting ``spark.submit.pyFiles`` or by directly +calling :meth:`pyspark.SparkContext.addPyFile`. + +This is an easy way to ship additional custom Python code to the cluster. You can just add individual files or zip whole +packages and upload them. Using :meth:`pyspark.SparkContext.addPyFile` allows to upload code +even after having started your job. + +Note that it doesn't allow to add packages built as `Wheels <https://www.python.org/dev/peps/pep-0427/>`_ and therefore doesn't +allowing to include dependencies with native code. + + +Using Zipped Virtual Environment +-------------------------------- + +The idea of zipped environments is to zip your whole `virtual environment <https://docs.python.org/3/tutorial/venv.html>`_, +ship it to the cluster, unzip it remotly and target the Python interpreter from inside this zipped environment. Note that this +is currently supported *only for YARN*. + +Zip Virtual Environment Review comment: Actually I did above `*only for YARN*` .. :-). If that sounds not enough, I am fine by emphasizing more. ########## File path: python/docs/source/user_guide/python_packaging.rst ########## @@ -0,0 +1,201 @@ +.. Licensed to the Apache Software Foundation (ASF) under one + or more contributor license agreements. See the NOTICE file + distributed with this work for additional information + regarding copyright ownership. The ASF licenses this file + to you under the Apache License, Version 2.0 (the + "License"); you may not use this file except in compliance + with the License. You may obtain a copy of the License at + +.. http://www.apache.org/licenses/LICENSE-2.0 + +.. Unless required by applicable law or agreed to in writing, + software distributed under the License is distributed on an + "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + KIND, either express or implied. See the License for the + specific language governing permissions and limitations + under the License. + + +========================= +3rd Party Python Packages +========================= + +When you want to run your PySpark application on a cluster such as YARN, Kubernetes, Mesos, etc., you need to make +sure that the your code and all used libraries are available on the executors. + +As an example let's say you may want to run the `Pandas UDF's examples <arrow_pandas.rst#series-to-scalar>`_. +As it uses pyarrow as an underlying implementation we need to make sure to have pyarrow installed on each executor +on the cluster. Otherwise you may get errors such as ``ModuleNotFoundError: No module named 'pyarrow'``. + +Here is the script ``app.py`` from the previous example that will be executed on the cluster: + +.. code-block:: python + + import pandas as pd + from pyspark.sql.functions import pandas_udf + from pyspark.sql import SparkSession + + def main(spark): + df = spark.createDataFrame( + [(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)], + ("id", "v")) + + @pandas_udf("double") + def mean_udf(v: pd.Series) -> float: + return v.mean() + + print(df.groupby("id").agg(mean_udf(df['v'])).collect()) + + + if __name__ == "__main__": + main(SparkSession.builder.getOrCreate()) + + +There are multiple ways to ship the dependencies to the cluster: + +- Using PySpark Native Features +- Using Zipped Virtual Environment +- Using PEX + + +Using PySpark Native Features +----------------------------- + +PySpark allows to upload Python files (``.py``), zipped Python packages (``.zip``), and Egg files (``.egg``) +to the executors by setting the configuration setting ``spark.submit.pyFiles`` or by directly +calling :meth:`pyspark.SparkContext.addPyFile`. + +This is an easy way to ship additional custom Python code to the cluster. You can just add individual files or zip whole +packages and upload them. Using :meth:`pyspark.SparkContext.addPyFile` allows to upload code +even after having started your job. + +Note that it doesn't allow to add packages built as `Wheels <https://www.python.org/dev/peps/pep-0427/>`_ and therefore doesn't +allowing to include dependencies with native code. + + +Using Zipped Virtual Environment +-------------------------------- + +The idea of zipped environments is to zip your whole `virtual environment <https://docs.python.org/3/tutorial/venv.html>`_, +ship it to the cluster, unzip it remotly and target the Python interpreter from inside this zipped environment. Note that this +is currently supported *only for YARN*. + +Zip Virtual Environment Review comment: Actually I did above `*only for YARN*` .. :-). If that sounds not enough, I am fine with emphasizing more. ---------------------------------------------------------------- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. For queries about this service, please contact Infrastructure at: [email protected] --------------------------------------------------------------------- To unsubscribe, e-mail: [email protected] For additional commands, e-mail: [email protected]
