AngersZhuuuu commented on a change in pull request #29054:
URL: https://github.com/apache/spark/pull/29054#discussion_r496712280
##########
File path:
sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveSessionCatalog.scala
##########
@@ -69,49 +119,18 @@ private[sql] class HiveSessionCatalog(
// Current thread context classloader may not be the one loaded the class.
Need to switch
// context classloader to initialize instance properly.
Utils.withContextClassLoader(clazz.getClassLoader) {
- Try(super.makeFunctionExpression(name, clazz, input)).getOrElse {
- var udfExpr: Option[Expression] = None
- try {
- // When we instantiate hive UDF wrapper class, we may throw
exception if the input
- // expressions don't satisfy the hive UDF, such as type mismatch,
input number
- // mismatch, etc. Here we catch the exception and throw
AnalysisException instead.
- if (classOf[UDF].isAssignableFrom(clazz)) {
- udfExpr = Some(HiveSimpleUDF(name, new
HiveFunctionWrapper(clazz.getName), input))
- udfExpr.get.dataType // Force it to check input data types.
- } else if (classOf[GenericUDF].isAssignableFrom(clazz)) {
- udfExpr = Some(HiveGenericUDF(name, new
HiveFunctionWrapper(clazz.getName), input))
- udfExpr.get.dataType // Force it to check input data types.
- } else if
(classOf[AbstractGenericUDAFResolver].isAssignableFrom(clazz)) {
- udfExpr = Some(HiveUDAFFunction(name, new
HiveFunctionWrapper(clazz.getName), input))
- udfExpr.get.dataType // Force it to check input data types.
- } else if (classOf[UDAF].isAssignableFrom(clazz)) {
- udfExpr = Some(HiveUDAFFunction(
- name,
- new HiveFunctionWrapper(clazz.getName),
- input,
- isUDAFBridgeRequired = true))
- udfExpr.get.dataType // Force it to check input data types.
- } else if (classOf[GenericUDTF].isAssignableFrom(clazz)) {
- udfExpr = Some(HiveGenericUDTF(name, new
HiveFunctionWrapper(clazz.getName), input))
- udfExpr.get.asInstanceOf[HiveGenericUDTF].elementSchema // Force
it to check data types.
- }
- } catch {
- case NonFatal(e) =>
- val noHandlerMsg = s"No handler for UDF/UDAF/UDTF
'${clazz.getCanonicalName}': $e"
- val errorMsg =
- if (classOf[GenericUDTF].isAssignableFrom(clazz)) {
- s"$noHandlerMsg\nPlease make sure your function overrides " +
- "`public StructObjectInspector initialize(ObjectInspector[]
args)`."
- } else {
- noHandlerMsg
- }
- val analysisException = new AnalysisException(errorMsg)
- analysisException.setStackTrace(e.getStackTrace)
- throw analysisException
- }
- udfExpr.getOrElse {
- throw new AnalysisException(s"No handler for UDF/UDAF/UDTF
'${clazz.getCanonicalName}'")
- }
+ try {
+ super.makeFunctionExpression(name, clazz, input)
+ } catch {
+ case _: InvalidUDFClassException =>
+ // If `super.makeFunctionExpression` throw
`InvalidUDFClassException`, we construct
+ // Hive UDF/UDAF/UDTF with function definition.
+ makeHiveFunctionExpression(name, clazz, input)
+ case e: AnalysisException =>
Review comment:
> nit: `case e => throw e`
>
> The only exception is `InvalidUDFClassException`, where we need to try
with Hive UDF class. For other exceptions, just re-throw.
Done
##########
File path:
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/catalog/SessionCatalog.scala
##########
@@ -1299,12 +1299,12 @@ class SessionCatalog(
// Check input argument size
if (e.inputTypes.size != input.size) {
- throw new AnalysisException(s"Invalid number of arguments for function
$name. " +
- s"Expected: ${e.inputTypes.size}; Found: ${input.size}")
+ throw new AnalysisException(s"Invalid number of arguments for " +
+ s"function $name. Expected: ${e.inputTypes.size}; Found:
${input.size}")
Review comment:
> unnecessary change
Done
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]