Github user mengxr commented on a diff in the pull request:

    https://github.com/apache/spark/pull/5266#discussion_r27924848
  
    --- Diff: mllib/src/main/scala/org/apache/spark/ml/feature/IDF.scala ---
    @@ -0,0 +1,114 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one or more
    + * contributor license agreements.  See the NOTICE file distributed with
    + * this work for additional information regarding copyright ownership.
    + * The ASF licenses this file to You under the Apache License, Version 2.0
    + * (the "License"); you may not use this file except in compliance with
    + * the License.  You may obtain a copy of the License at
    + *
    + *    http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.spark.ml.feature
    +
    +import org.apache.spark.annotation.AlphaComponent
    +import org.apache.spark.ml._
    +import org.apache.spark.ml.param._
    +import org.apache.spark.mllib.feature
    +import org.apache.spark.mllib.linalg.{Vector, VectorUDT}
    +import org.apache.spark.sql._
    +import org.apache.spark.sql.functions._
    +import org.apache.spark.sql.types.{StructField, StructType}
    +
    +/**
    + * Params for [[IDF]] and [[IDFModel]].
    + */
    +private[feature] trait IDFParams extends Params with HasInputCol with 
HasOutputCol {
    +  val minDocFreq = new IntParam(
    +    this, "minDocFreq", "minimum of documents in which a term should 
appear for filtering", Some(0))
    +
    +  def getMinDocFreq: Int = {
    +    get(minDocFreq)
    +  }
    +
    +  def setMinDocFreq(value: Int): this.type = {
    +    set(minDocFreq, value)
    +  }
    +
    +  /**
    +   * Validate and transform the input schema.
    +   */
    +  protected def validateAndTransformSchema(schema: StructType, paramMap: 
ParamMap): StructType = {
    +    val map = this.paramMap ++ paramMap
    +    val inputType = schema(map(inputCol)).dataType
    +    require(inputType.isInstanceOf[VectorUDT],
    +      s"Input column ${map(inputCol)} must be a vector column")
    +    require(!schema.fieldNames.contains(map(outputCol)),
    +      s"Output column ${map(outputCol)} already exists.")
    +    val outputFields = schema.fields :+ StructField(map(outputCol), new 
VectorUDT, false)
    +    StructType(outputFields)
    +  }
    +}
    +
    +/**
    + * :: AlphaComponent ::
    + * Compute the Inverse Document Frequency (IDF) given a collection of 
documents.
    + */
    +@AlphaComponent
    +class IDF extends Estimator[IDFModel] with IDFParams {
    +
    +  /** @group setParam */
    +  def setInputCol(value: String): this.type = set(inputCol, value)
    +
    +  /** @group setParam */
    +  def setOutputCol(value: String): this.type = set(outputCol, value)
    +
    +  override def fit(dataset: DataFrame, paramMap: ParamMap): IDFModel = {
    +    transformSchema(dataset.schema, paramMap, logging = true)
    +    val map = this.paramMap ++ paramMap
    +    val input = dataset.select(map(inputCol)).map { case Row(v: Vector) => 
v }
    +    val idf = new feature.IDF(getMinDocFreq).fit(input)
    +    val model = new IDFModel(this, map, idf)
    +    Params.inheritValues(map, this, model)
    +    model
    +  }
    +
    +  override def transformSchema(schema: StructType, paramMap: ParamMap): 
StructType = {
    +    validateAndTransformSchema(schema, paramMap)
    +  }
    +}
    +
    +/**
    + * :: AlphaComponent ::
    + * Model fitted by [[IDF]].
    + */
    +@AlphaComponent
    +class IDFModel private[ml] (
    +    override val parent: IDF,
    +    override val fittingParamMap: ParamMap,
    +    idfModel: feature.IDFModel)
    +  extends Model[IDFModel] with IDFParams {
    +
    +  /** @group setParam */
    +  def setInputCol(value: String): this.type = set(inputCol, value)
    +
    +  /** @group setParam */
    +  def setOutputCol(value: String): this.type = set(outputCol, value)
    +
    +  override def transform(dataset: DataFrame, paramMap: ParamMap): 
DataFrame = {
    +    transformSchema(dataset.schema, paramMap, logging = true)
    +    val map = this.paramMap ++ paramMap
    +    val idf = udf((v: Vector) => { idfModel.transform(v) })
    --- End diff --
    
    Let's be consistent on the `udf` code style: `udf { (v: Vector) => 
idfModel.transform(v) }`. See examples at 
https://github.com/apache/spark/blob/master/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala#L139
    



---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to