maropu commented on a change in pull request #29587:
URL: https://github.com/apache/spark/pull/29587#discussion_r499321425
##########
File path:
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/ResolveUnion.scala
##########
@@ -17,29 +17,202 @@
package org.apache.spark.sql.catalyst.analysis
+import scala.collection.mutable
+
import org.apache.spark.sql.AnalysisException
-import org.apache.spark.sql.catalyst.expressions.{Alias, Literal}
+import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.optimizer.CombineUnions
import org.apache.spark.sql.catalyst.plans.logical.{LogicalPlan, Project,
Union}
import org.apache.spark.sql.catalyst.rules.Rule
import org.apache.spark.sql.internal.SQLConf
+import org.apache.spark.sql.types._
import org.apache.spark.sql.util.SchemaUtils
+import org.apache.spark.unsafe.types.UTF8String
/**
* Resolves different children of Union to a common set of columns.
*/
object ResolveUnion extends Rule[LogicalPlan] {
- private def unionTwoSides(
+ /**
+ * This method sorts recursively columns in a struct expression based on
column names.
+ */
+ private def sortStructFields(expr: Expression): Expression = {
+ val existingExprs =
expr.dataType.asInstanceOf[StructType].fieldNames.zipWithIndex.map {
+ case (name, i) =>
+ val fieldExpr = GetStructField(KnownNotNull(expr), i)
+ if (fieldExpr.dataType.isInstanceOf[StructType]) {
+ (name, sortStructFields(fieldExpr))
+ } else {
+ (name, fieldExpr)
+ }
+ }.sortBy(_._1).flatMap(pair => Seq(Literal(pair._1), pair._2))
+
+ val newExpr = CreateNamedStruct(existingExprs)
+ if (expr.nullable) {
+ If(IsNull(expr), Literal(null, newExpr.dataType), newExpr)
+ } else {
+ newExpr
+ }
+ }
+
+ /**
+ * Assumes input expressions are field expression of `CreateNamedStruct`.
This method
+ * sorts the expressions based on field names.
+ */
+ private def sortFieldExprs(fieldExprs: Seq[Expression]): Seq[Expression] = {
+ fieldExprs.grouped(2).map { e =>
+ Seq(e.head, e.last)
+ }.toSeq.sortBy { pair =>
+ assert(pair.head.isInstanceOf[Literal])
+ pair.head.eval().asInstanceOf[UTF8String].toString
+ }.flatten
+ }
+
+ /**
+ * This helper method sorts fields in a `WithFields` expression by field
name.
+ */
+ private def sortStructFieldsInWithFields(expr: Expression): Expression =
expr transformUp {
+ case w: WithFields if w.resolved =>
+ w.evalExpr match {
+ case i @ If(IsNull(_), _, CreateNamedStruct(fieldExprs)) =>
+ val sorted = sortFieldExprs(fieldExprs)
+ val newStruct = CreateNamedStruct(sorted)
+ i.copy(trueValue = Literal(null, newStruct.dataType), falseValue =
newStruct)
+ case CreateNamedStruct(fieldExprs) =>
+ val sorted = sortFieldExprs(fieldExprs)
+ val newStruct = CreateNamedStruct(sorted)
+ newStruct
+ case other =>
Review comment:
If this case means a program bug, the message should include `Please
file a bug report ...` like the others?
https://github.com/apache/spark/blob/fab53212cb110a81696cee8546c35095332f6e09/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/Analyzer.scala#L2747-L2748
##########
File path:
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/ResolveUnion.scala
##########
@@ -17,29 +17,202 @@
package org.apache.spark.sql.catalyst.analysis
+import scala.collection.mutable
+
import org.apache.spark.sql.AnalysisException
-import org.apache.spark.sql.catalyst.expressions.{Alias, Literal}
+import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.optimizer.CombineUnions
import org.apache.spark.sql.catalyst.plans.logical.{LogicalPlan, Project,
Union}
import org.apache.spark.sql.catalyst.rules.Rule
import org.apache.spark.sql.internal.SQLConf
+import org.apache.spark.sql.types._
import org.apache.spark.sql.util.SchemaUtils
+import org.apache.spark.unsafe.types.UTF8String
/**
* Resolves different children of Union to a common set of columns.
*/
object ResolveUnion extends Rule[LogicalPlan] {
- private def unionTwoSides(
+ /**
+ * This method sorts recursively columns in a struct expression based on
column names.
+ */
+ private def sortStructFields(expr: Expression): Expression = {
+ val existingExprs =
expr.dataType.asInstanceOf[StructType].fieldNames.zipWithIndex.map {
+ case (name, i) =>
+ val fieldExpr = GetStructField(KnownNotNull(expr), i)
+ if (fieldExpr.dataType.isInstanceOf[StructType]) {
+ (name, sortStructFields(fieldExpr))
+ } else {
+ (name, fieldExpr)
+ }
+ }.sortBy(_._1).flatMap(pair => Seq(Literal(pair._1), pair._2))
+
+ val newExpr = CreateNamedStruct(existingExprs)
+ if (expr.nullable) {
+ If(IsNull(expr), Literal(null, newExpr.dataType), newExpr)
+ } else {
+ newExpr
+ }
+ }
+
+ /**
+ * Assumes input expressions are field expression of `CreateNamedStruct`.
This method
+ * sorts the expressions based on field names.
+ */
+ private def sortFieldExprs(fieldExprs: Seq[Expression]): Seq[Expression] = {
+ fieldExprs.grouped(2).map { e =>
+ Seq(e.head, e.last)
+ }.toSeq.sortBy { pair =>
+ assert(pair.head.isInstanceOf[Literal])
+ pair.head.eval().asInstanceOf[UTF8String].toString
+ }.flatten
+ }
+
+ /**
+ * This helper method sorts fields in a `WithFields` expression by field
name.
+ */
+ private def sortStructFieldsInWithFields(expr: Expression): Expression =
expr transformUp {
+ case w: WithFields if w.resolved =>
+ w.evalExpr match {
+ case i @ If(IsNull(_), _, CreateNamedStruct(fieldExprs)) =>
+ val sorted = sortFieldExprs(fieldExprs)
+ val newStruct = CreateNamedStruct(sorted)
+ i.copy(trueValue = Literal(null, newStruct.dataType), falseValue =
newStruct)
+ case CreateNamedStruct(fieldExprs) =>
+ val sorted = sortFieldExprs(fieldExprs)
+ val newStruct = CreateNamedStruct(sorted)
+ newStruct
+ case other =>
+ throw new AnalysisException(s"`WithFields` has incorrect eval
expression: $other")
+ }
+ }
+
+ def simplifyWithFields(expr: Expression): Expression = {
Review comment:
nit: `private`. Btw, all the transformations in this method will be
moved into an optimizer rule in followup? We normally add tests when adding a
new rule, but this PR does not have any test for them.
##########
File path:
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/ResolveUnion.scala
##########
@@ -17,29 +17,202 @@
package org.apache.spark.sql.catalyst.analysis
+import scala.collection.mutable
+
import org.apache.spark.sql.AnalysisException
-import org.apache.spark.sql.catalyst.expressions.{Alias, Literal}
+import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.optimizer.CombineUnions
import org.apache.spark.sql.catalyst.plans.logical.{LogicalPlan, Project,
Union}
import org.apache.spark.sql.catalyst.rules.Rule
import org.apache.spark.sql.internal.SQLConf
+import org.apache.spark.sql.types._
import org.apache.spark.sql.util.SchemaUtils
+import org.apache.spark.unsafe.types.UTF8String
/**
* Resolves different children of Union to a common set of columns.
*/
object ResolveUnion extends Rule[LogicalPlan] {
- private def unionTwoSides(
+ /**
+ * This method sorts recursively columns in a struct expression based on
column names.
+ */
+ private def sortStructFields(expr: Expression): Expression = {
+ val existingExprs =
expr.dataType.asInstanceOf[StructType].fieldNames.zipWithIndex.map {
+ case (name, i) =>
+ val fieldExpr = GetStructField(KnownNotNull(expr), i)
+ if (fieldExpr.dataType.isInstanceOf[StructType]) {
+ (name, sortStructFields(fieldExpr))
+ } else {
+ (name, fieldExpr)
+ }
+ }.sortBy(_._1).flatMap(pair => Seq(Literal(pair._1), pair._2))
+
+ val newExpr = CreateNamedStruct(existingExprs)
+ if (expr.nullable) {
+ If(IsNull(expr), Literal(null, newExpr.dataType), newExpr)
+ } else {
+ newExpr
+ }
+ }
+
+ /**
+ * Assumes input expressions are field expression of `CreateNamedStruct`.
This method
+ * sorts the expressions based on field names.
+ */
+ private def sortFieldExprs(fieldExprs: Seq[Expression]): Seq[Expression] = {
+ fieldExprs.grouped(2).map { e =>
+ Seq(e.head, e.last)
+ }.toSeq.sortBy { pair =>
+ assert(pair.head.isInstanceOf[Literal])
+ pair.head.eval().asInstanceOf[UTF8String].toString
+ }.flatten
+ }
+
+ /**
+ * This helper method sorts fields in a `WithFields` expression by field
name.
+ */
+ private def sortStructFieldsInWithFields(expr: Expression): Expression =
expr transformUp {
+ case w: WithFields if w.resolved =>
+ w.evalExpr match {
+ case i @ If(IsNull(_), _, CreateNamedStruct(fieldExprs)) =>
+ val sorted = sortFieldExprs(fieldExprs)
+ val newStruct = CreateNamedStruct(sorted)
+ i.copy(trueValue = Literal(null, newStruct.dataType), falseValue =
newStruct)
+ case CreateNamedStruct(fieldExprs) =>
+ val sorted = sortFieldExprs(fieldExprs)
+ val newStruct = CreateNamedStruct(sorted)
+ newStruct
+ case other =>
+ throw new AnalysisException(s"`WithFields` has incorrect eval
expression: $other")
+ }
+ }
+
+ def simplifyWithFields(expr: Expression): Expression = {
+ expr.transformUp {
+ case WithFields(structExpr, names, values) if names.distinct.length !=
names.length =>
+ val newNames = mutable.ArrayBuffer.empty[String]
+ val newValues = mutable.ArrayBuffer.empty[Expression]
+ names.zip(values).reverse.foreach { case (name, value) =>
+ if (!newNames.contains(name)) {
+ newNames += name
+ newValues += value
+ }
+ }
+ WithFields(structExpr, names = newNames.reverse, valExprs =
newValues.reverse)
+ case WithFields(WithFields(struct, names1, valExprs1), names2,
valExprs2) =>
+ WithFields(struct, names1 ++ names2, valExprs1 ++ valExprs2)
Review comment:
duplicated?
https://github.com/apache/spark/blob/fab53212cb110a81696cee8546c35095332f6e09/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/WithFields.scala#L30-L31
##########
File path:
sql/catalyst/src/main/scala/org/apache/spark/sql/internal/SQLConf.scala
##########
@@ -2721,6 +2721,16 @@ object SQLConf {
.booleanConf
.createWithDefault(false)
+ val UNION_BYNAME_STRUCT_SUPPORT_ENABLED =
+ buildConf("spark.sql.unionByName.structSupport.enabled")
+ .doc("When true, the `allowMissingColumns` feature of
`Dataset.unionByName` supports " +
+ "nested column in struct types. Missing nested columns of struct
columns with same " +
+ "name will also be filled with null values. This currently does not
support nested " +
+ "columns in array and map types.")
Review comment:
How about explaining the behavior of the fields being sorted when
merging them? I'm a bit worried that users might be surprised about the
behavior.
```
scala> val df1 = spark.range(1).selectExpr("id c0", "named_struct('c', id +
1, 'b', id + 2, 'a', id + 3) c1")
scala> val df2 = spark.range(1).selectExpr("id c0", "named_struct('c', id +
1, 'b', id + 2) c1")
scala> df1.unionByName(df1, true).printSchema()
root
|-- c0: long (nullable = false)
|-- c1: struct (nullable = false)
| |-- c: long (nullable = false)
| |-- b: long (nullable = false)
| |-- a: long (nullable = false)
scala> df1.unionByName(df2, true).printSchema()
root
|-- c0: long (nullable = false)
|-- c1: struct (nullable = false)
| |-- a: long (nullable = true)
| |-- b: long (nullable = false)
| |-- c: long (nullable = false)
```
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]