cloud-fan commented on a change in pull request #29972:
URL: https://github.com/apache/spark/pull/29972#discussion_r504374789



##########
File path: 
external/docker-integration-tests/src/test/scala/org/apache/spark/sql/jdbc/v2/V2JDBCTest.scala
##########
@@ -0,0 +1,98 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *    http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.sql.jdbc.v2
+
+import org.apache.spark.sql.AnalysisException
+import org.apache.spark.sql.test.SharedSparkSession
+import org.apache.spark.sql.types._
+import org.apache.spark.tags.DockerTest
+
+@DockerTest
+trait V2JDBCTest extends SharedSparkSession {
+  val catalogName: String
+  // dialect specific update column type test
+  def testUpdateColumnType(tbl: String): Unit
+
+  test("SPARK-33034: ALTER TABLE ... add new columns") {
+    withTable(s"$catalogName.alt_table") {
+      sql(s"CREATE TABLE $catalogName.alt_table (ID STRING) USING _")
+      var t = spark.table(s"$catalogName.alt_table")
+      var expectedSchema = new StructType().add("ID", StringType)
+      assert(t.schema === expectedSchema)
+      sql(s"ALTER TABLE $catalogName.alt_table ADD COLUMNS (C1 STRING, C2 
STRING)")
+      t = spark.table(s"$catalogName.alt_table")
+      expectedSchema = expectedSchema.add("C1", StringType).add("C2", 
StringType)
+      assert(t.schema === expectedSchema)
+      sql(s"ALTER TABLE $catalogName.alt_table ADD COLUMNS (C3 STRING)")
+      t = spark.table(s"$catalogName.alt_table")
+      expectedSchema = expectedSchema.add("C3", StringType)
+      assert(t.schema === expectedSchema)
+      // Add already existing column
+      val msg = intercept[AnalysisException] {
+        sql(s"ALTER TABLE $catalogName.alt_table ADD COLUMNS (C3 DOUBLE)")
+      }.getMessage
+      assert(msg.contains("Cannot add column, because C3 already exists"))
+    }
+    // Add a column to not existing table
+    val msg = intercept[AnalysisException] {
+      sql(s"ALTER TABLE $catalogName.not_existing_table ADD COLUMNS (C4 
STRING)")
+    }.getMessage
+    assert(msg.contains("Table not found"))
+  }
+
+  test("SPARK-33034: ALTER TABLE ... update column type") {
+    withTable(s"$catalogName.alt_table") {
+      testUpdateColumnType(s"$catalogName.alt_table")
+      // Update not existing column
+      val msg2 = intercept[AnalysisException] {
+        sql(s"ALTER TABLE $catalogName.alt_table ALTER COLUMN bad_column TYPE 
DOUBLE")
+      }.getMessage
+      assert(msg2.contains("Cannot update missing field bad_column"))
+    }
+    // Update column type in not existing table
+    val msg = intercept[AnalysisException] {
+      sql(s"ALTER TABLE $catalogName.not_existing_table ALTER COLUMN id TYPE 
DOUBLE")
+    }.getMessage
+    assert(msg.contains("Table not found"))
+  }
+
+  test("SPARK-33034: ALTER TABLE ... update column nullability") {
+    withTable(s"$catalogName.alt_table") {
+      sql(s"CREATE TABLE $catalogName.alt_table (ID STRING NOT NULL) USING _")
+      var t = spark.table(s"$catalogName.alt_table")
+      // nullable is true in the expecteSchema because Spark always sets 
nullable to true
+      // regardless of the JDBC metadata 
https://github.com/apache/spark/pull/18445

Review comment:
       This does expose a problem in Spark: most databases allow to write 
nullable data to non-nullable column, and fail at runtime if they see null 
values. I think Spark shouldn't block it at compile time. After all, 
nullability is more like a constraint, not data type itself.  cc @rdblue 
@dongjoon-hyun @viirya @maropu @MaxGekk 




----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]



---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to