srowen commented on a change in pull request #30548:
URL: https://github.com/apache/spark/pull/30548#discussion_r534626342



##########
File path: mllib/src/main/scala/org/apache/spark/ml/feature/Word2Vec.scala
##########
@@ -278,34 +279,45 @@ class Word2VecModel private[ml] (
   @Since("1.4.0")
   def setOutputCol(value: String): this.type = set(outputCol, value)
 
+  private var bcModel: Broadcast[Word2VecModel] = _
+
   /**
    * Transform a sentence column to a vector column to represent the whole 
sentence. The transform
    * is performed by averaging all word vectors it contains.
    */
   @Since("2.0.0")
   override def transform(dataset: Dataset[_]): DataFrame = {
     val outputSchema = transformSchema(dataset.schema, logging = true)
-    val vectors = wordVectors.getVectors
-      .mapValues(vv => Vectors.dense(vv.map(_.toDouble)))
-      .map(identity).toMap // mapValues doesn't return a serializable map 
(SI-7005)
-    val bVectors = dataset.sparkSession.sparkContext.broadcast(vectors)
-    val d = $(vectorSize)
-    val emptyVec = Vectors.sparse(d, Array.emptyIntArray, 
Array.emptyDoubleArray)
-    val word2Vec = udf { sentence: Seq[String] =>
+
+    if (bcModel == null) {
+      bcModel = dataset.sparkSession.sparkContext.broadcast(this)

Review comment:
       Oops, right, I _think_ I meant to say that you only use those two. is 
there any savings from just broadcasting those rather than the whole model? if 
not that's fine.




----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]



---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to